Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2011, Volume 167, Number 3, Pages 364–376
DOI: https://doi.org/10.4213/tmf6647
(Mi tmf6647)
 

This article is cited in 10 scientific papers (total in 10 papers)

A new goldfish model

F. Calogeroab

a Nazionale di Fisica Nucleare, Sezione di Roma, Roma, Italy
b Physics Department, University of Rome "La Sapienza", Roma, Italy
References:
Abstract: A new integrable (indeed, solvable) model of goldfish type is identified, and some of its properties are discussed. A version of its Newtonian equations of motion reads as follows:
$$ \ddot{z}_n=\frac{\beta\dot{z}_n(\dot{z}_n+\eta)}{1+\beta z_n}+ \sum_{m=1,m\ne n}^N\frac{(\dot{z}_n-\beta\eta z_n) (\dot{z}_m-\beta\eta z_m)\bigl[2+\beta(z_n+z_m)\bigr]} {(z_n-z_m)(1+\beta z_m)}, $$
where $z_n\equiv z_n(t)$ are the $N$ dependent variables, $t$ is the independent variable (“time”), the dots indicate time differentiations, and $\beta$, $\eta$ are two arbitrary constants.
Keywords: integrable dynamical system, solvable dynamical system, integrable Newtonian many-body problem.
Received: 23.06.2011
English version:
Theoretical and Mathematical Physics, 2011, Volume 167, Issue 3, Pages 714–724
DOI: https://doi.org/10.1007/s11232-011-0056-4
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: F. Calogero, “A new goldfish model”, TMF, 167:3 (2011), 364–376; Theoret. and Math. Phys., 167:3 (2011), 714–724
Citation in format AMSBIB
\Bibitem{Cal11}
\by F.~Calogero
\paper A~new goldfish model
\jour TMF
\yr 2011
\vol 167
\issue 3
\pages 364--376
\mathnet{http://mi.mathnet.ru/tmf6647}
\crossref{https://doi.org/10.4213/tmf6647}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2084147}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011TMP...167..714C}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 167
\issue 3
\pages 714--724
\crossref{https://doi.org/10.1007/s11232-011-0056-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000293653700004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79960091104}
Linking options:
  • https://www.mathnet.ru/eng/tmf6647
  • https://doi.org/10.4213/tmf6647
  • https://www.mathnet.ru/eng/tmf/v167/i3/p364
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:656
    Full-text PDF :247
    References:94
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024