Abstract:
We study the boundary value problem wt=ϰ0Δw+ϰ1w−ϰ2w|w|2, w|∂Ω0=0 in the domain Ω0={(x,y)0≤x≤l1,0≤y≤l2}. Here, w is a complex-valued function, Δ is the Laplace operator, and ϰj, j=0,1,2, are complex constants with Reϰj>0. We show that under a rather general choice of the parameters l1 and l2, the number of stable invariant tori in the problem, as well as their dimensions, grows infinitely as Reϰ0→0 and Reϰ1→0.
Citation:
A. Yu. Kolesov, N. Kh. Rozov, “Characteristic features of the dynamics of the Ginzburg–Landau equation in a plane domain”, TMF, 125:2 (2000), 205–220; Theoret. and Math. Phys., 125:2 (2000), 1476–1488
\Bibitem{KolRoz00}
\by A.~Yu.~Kolesov, N.~Kh.~Rozov
\paper Characteristic features of the dynamics of the Ginzburg--Landau equation in a plane domain
\jour TMF
\yr 2000
\vol 125
\issue 2
\pages 205--220
\mathnet{http://mi.mathnet.ru/tmf664}
\crossref{https://doi.org/10.4213/tmf664}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1837683}
\zmath{https://zbmath.org/?q=an:0986.35052}
\elib{https://elibrary.ru/item.asp?id=13347569}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 125
\issue 2
\pages 1476--1488
\crossref{https://doi.org/10.1007/BF02551008}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000166090500002}
Linking options:
https://www.mathnet.ru/eng/tmf664
https://doi.org/10.4213/tmf664
https://www.mathnet.ru/eng/tmf/v125/i2/p205
This publication is cited in the following 9 articles:
Kong L., Kuang L., Wang T., “Efficient Numerical Schemes For Two-Dimensional Ginzburg-Landau Equation in Superconductivity”, Discrete Contin. Dyn. Syst.-Ser. B, 24:12 (2019), 6325–6347
Shokri A., Afshari F., “High-Order Compact Adi Method Using Predictor-Corrector Scheme For 2D Complex Ginzburg-Landau Equation”, Comput. Phys. Commun., 197 (2015), 43–50
Shokri A., Dehghan M., “A Meshless Method Using Radial Basis Functions for the Numerical Solution of Two-Dimensional Complex Ginzburg-Landau Equation”, CMES-Comp. Model. Eng. Sci., 84:4 (2012), 333–358
A. Yu. Kolesov, N. Kh. Rozov, V. A. Sadovnichii, “Mathematical aspects of the theory of development of turbulence in the sense of Landau”, Russian Math. Surveys, 63:2 (2008), 221–282
A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov, “Buffer Phenomenon in Nonlinear Physics”, Proc. Steklov Inst. Math., 250 (2005), 102–168
A. Yu. Kolesov, A. N. Kulikov, N. Kh. Rozov, “Attractors of Singularly Perturbed Parabolic Systems of First Degree of Nonroughness in a Plane Domain”, Math. Notes, 75:5 (2004), 617–622
Kolesov AY, Rozov NK, “The buffer phenomenon in combustion theory”, Doklady Mathematics, 69:3 (2004), 469–472
A. Yu. Kolesov, N. Kh. Rozov, “The existence of countably many stable cycles for a generalized cubic Schrödinger equation in a planar domain”, Izv. Math., 67:6 (2003), 1213–1242
Kolesov A.Y., Rozov N.K., “The buffer phenomenon in the Van Der Pol oscillator with delay”, Differential Equations, 38:2 (2002), 175–186