Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2000, Volume 125, Number 2, Pages 205–220
DOI: https://doi.org/10.4213/tmf664
(Mi tmf664)
 

This article is cited in 9 scientific papers (total in 9 papers)

Characteristic features of the dynamics of the Ginzburg–Landau equation in a plane domain

A. Yu. Kolesova, N. Kh. Rozovb

a P. G. Demidov Yaroslavl State University
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (273 kB) Citations (9)
References:
Abstract: We study the boundary value problem wt=ϰ0Δw+ϰ1wϰ2w|w|2, w|Ω0=0 in the domain Ω0={(x,y)0xl1,0yl2}. Here, w is a complex-valued function, Δ is the Laplace operator, and ϰj, j=0,1,2, are complex constants with Reϰj>0. We show that under a rather general choice of the parameters l1 and l2, the number of stable invariant tori in the problem, as well as their dimensions, grows infinitely as Reϰ00 and Reϰ10.
Received: 24.04.2000
English version:
Theoretical and Mathematical Physics, 2000, Volume 125, Issue 2, Pages 1476–1488
DOI: https://doi.org/10.1007/BF02551008
Bibliographic databases:
Language: Russian
Citation: A. Yu. Kolesov, N. Kh. Rozov, “Characteristic features of the dynamics of the Ginzburg–Landau equation in a plane domain”, TMF, 125:2 (2000), 205–220; Theoret. and Math. Phys., 125:2 (2000), 1476–1488
Citation in format AMSBIB
\Bibitem{KolRoz00}
\by A.~Yu.~Kolesov, N.~Kh.~Rozov
\paper Characteristic features of the dynamics of the Ginzburg--Landau equation in a plane domain
\jour TMF
\yr 2000
\vol 125
\issue 2
\pages 205--220
\mathnet{http://mi.mathnet.ru/tmf664}
\crossref{https://doi.org/10.4213/tmf664}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1837683}
\zmath{https://zbmath.org/?q=an:0986.35052}
\elib{https://elibrary.ru/item.asp?id=13347569}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 125
\issue 2
\pages 1476--1488
\crossref{https://doi.org/10.1007/BF02551008}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000166090500002}
Linking options:
  • https://www.mathnet.ru/eng/tmf664
  • https://doi.org/10.4213/tmf664
  • https://www.mathnet.ru/eng/tmf/v125/i2/p205
  • This publication is cited in the following 9 articles:
    1. Kong L., Kuang L., Wang T., “Efficient Numerical Schemes For Two-Dimensional Ginzburg-Landau Equation in Superconductivity”, Discrete Contin. Dyn. Syst.-Ser. B, 24:12 (2019), 6325–6347  crossref  mathscinet  isi
    2. Shokri A., Afshari F., “High-Order Compact Adi Method Using Predictor-Corrector Scheme For 2D Complex Ginzburg-Landau Equation”, Comput. Phys. Commun., 197 (2015), 43–50  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    3. Shokri A., Dehghan M., “A Meshless Method Using Radial Basis Functions for the Numerical Solution of Two-Dimensional Complex Ginzburg-Landau Equation”, CMES-Comp. Model. Eng. Sci., 84:4 (2012), 333–358  mathscinet  zmath  isi  elib
    4. A. Yu. Kolesov, N. Kh. Rozov, V. A. Sadovnichii, “Mathematical aspects of the theory of development of turbulence in the sense of Landau”, Russian Math. Surveys, 63:2 (2008), 221–282  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    5. A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov, “Buffer Phenomenon in Nonlinear Physics”, Proc. Steklov Inst. Math., 250 (2005), 102–168  mathnet  mathscinet  zmath
    6. A. Yu. Kolesov, A. N. Kulikov, N. Kh. Rozov, “Attractors of Singularly Perturbed Parabolic Systems of First Degree of Nonroughness in a Plane Domain”, Math. Notes, 75:5 (2004), 617–622  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    7. Kolesov AY, Rozov NK, “The buffer phenomenon in combustion theory”, Doklady Mathematics, 69:3 (2004), 469–472  mathscinet  isi
    8. A. Yu. Kolesov, N. Kh. Rozov, “The existence of countably many stable cycles for a generalized cubic Schrödinger equation in a planar domain”, Izv. Math., 67:6 (2003), 1213–1242  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    9. Kolesov A.Y., Rozov N.K., “The buffer phenomenon in the Van Der Pol oscillator with delay”, Differential Equations, 38:2 (2002), 175–186  mathnet  crossref  mathscinet  zmath  isi  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:502
    Full-text PDF :202
    References:77
    First page:3
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025