Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2000, Volume 125, Number 2, Pages 205–220
DOI: https://doi.org/10.4213/tmf664
(Mi tmf664)
 

This article is cited in 9 scientific papers (total in 9 papers)

Characteristic features of the dynamics of the Ginzburg–Landau equation in a plane domain

A. Yu. Kolesova, N. Kh. Rozovb

a P. G. Demidov Yaroslavl State University
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (273 kB) Citations (9)
References:
Abstract: We study the boundary value problem $w_t=\varkappa_0\Delta w+\varkappa_1w-\varkappa_2w|w|^2$, $w|_{\partial\Omega_0}=0$ in the domain $\Omega_0=\bigl\{(x,y)\:0\leq x\leq l_1,0\leq y\leq l_2\bigr\}$. Here, $w$ is a complex-valued function, $\Delta$ is the Laplace operator, and $\varkappa_j$, $j=0,1,2$, are complex constants with $\mathrm{Re}\varkappa_j>0$. We show that under a rather general choice of the parameters $l_1$ and $l_2$, the number of stable invariant tori in the problem, as well as their dimensions, grows infinitely as $\mathrm{Re}\varkappa_0\to0$ and $\mathrm{Re}\varkappa_1\to0$.
Received: 24.04.2000
English version:
Theoretical and Mathematical Physics, 2000, Volume 125, Issue 2, Pages 1476–1488
DOI: https://doi.org/10.1007/BF02551008
Bibliographic databases:
Language: Russian
Citation: A. Yu. Kolesov, N. Kh. Rozov, “Characteristic features of the dynamics of the Ginzburg–Landau equation in a plane domain”, TMF, 125:2 (2000), 205–220; Theoret. and Math. Phys., 125:2 (2000), 1476–1488
Citation in format AMSBIB
\Bibitem{KolRoz00}
\by A.~Yu.~Kolesov, N.~Kh.~Rozov
\paper Characteristic features of the dynamics of the Ginzburg--Landau equation in a plane domain
\jour TMF
\yr 2000
\vol 125
\issue 2
\pages 205--220
\mathnet{http://mi.mathnet.ru/tmf664}
\crossref{https://doi.org/10.4213/tmf664}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1837683}
\zmath{https://zbmath.org/?q=an:0986.35052}
\elib{https://elibrary.ru/item.asp?id=13347569}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 125
\issue 2
\pages 1476--1488
\crossref{https://doi.org/10.1007/BF02551008}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000166090500002}
Linking options:
  • https://www.mathnet.ru/eng/tmf664
  • https://doi.org/10.4213/tmf664
  • https://www.mathnet.ru/eng/tmf/v125/i2/p205
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024