Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2000, Volume 125, Number 2, Pages 179–204
DOI: https://doi.org/10.4213/tmf663
(Mi tmf663)
 

Hidden quantum $R$-matrix in the discrete-time classical Heisenberg magnet

A. V. Zabrodinab

a N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences
b Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)
References:
Abstract: We construct local $M$-operators for an integrable discrete-time version of the classical Heisenberg magnet by convoluting the twisted quantum trigonometric $4\times4$ $R$-matrix with certain vectors in its “quantum” space. Components of the vectors are identified with $\tau$-functions of the model. Hirota's bilinear formalism is extensively used. The construction generalizes the known representation of $M$-operators in continuous-time models in terms of Lax operators and the classical $r$-matrix.
Received: 28.04.2000
English version:
Theoretical and Mathematical Physics, 2000, Volume 125, Issue 2, Pages 1455–1475
DOI: https://doi.org/10.1007/BF02551007
Bibliographic databases:
Language: Russian
Citation: A. V. Zabrodin, “Hidden quantum $R$-matrix in the discrete-time classical Heisenberg magnet”, TMF, 125:2 (2000), 179–204; Theoret. and Math. Phys., 125:2 (2000), 1455–1475
Citation in format AMSBIB
\Bibitem{Zab00}
\by A.~V.~Zabrodin
\paper Hidden quantum $R$-matrix in the discrete-time classical Heisenberg magnet
\jour TMF
\yr 2000
\vol 125
\issue 2
\pages 179--204
\mathnet{http://mi.mathnet.ru/tmf663}
\crossref{https://doi.org/10.4213/tmf663}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1837682}
\zmath{https://zbmath.org/?q=an:0980.81030}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 125
\issue 2
\pages 1455--1475
\crossref{https://doi.org/10.1007/BF02551007}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000166090500001}
Linking options:
  • https://www.mathnet.ru/eng/tmf663
  • https://doi.org/10.4213/tmf663
  • https://www.mathnet.ru/eng/tmf/v125/i2/p179
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:465
    Full-text PDF :223
    References:62
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024