Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2011, Volume 167, Number 2, Pages 214–221
DOI: https://doi.org/10.4213/tmf6635
(Mi tmf6635)
 

This article is cited in 51 scientific papers (total in 51 papers)

An integrable equation with nonsmooth solitons

Zhijun Qiao, Xianqi Li

Department of Mathematics, The University of Texas-Pan American, Edinburg, USA
References:
Abstract: We present the bi-Hamiltonian structure and Lax pair of the equation ρt=bux+(1/2)[(u2ux2)ρ]x, where ρ=uuxx and b=const, which guarantees its integrability in the Lax pair sense. We study nonsmooth soliton solutions of this equation and show that under the vanishing boundary condition u0 at the space and time infinities, the equation has both “W/M-shape” peaked soliton (peakon) and cusped soliton (cuspon) solutions.
Keywords: integrable equation, Lax pair, peakon, cuspon.
Received: 03.06.2009
Revised: 26.10.2010
English version:
Theoretical and Mathematical Physics, 2011, Volume 167, Issue 2, Pages 584–589
DOI: https://doi.org/10.1007/s11232-011-0044-8
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Zhijun Qiao, Xianqi Li, “An integrable equation with nonsmooth solitons”, TMF, 167:2 (2011), 214–221; Theoret. and Math. Phys., 167:2 (2011), 584–589
Citation in format AMSBIB
\Bibitem{QiaLi11}
\by Zhijun~Qiao, Xianqi~Li
\paper An~integrable equation with nonsmooth solitons
\jour TMF
\yr 2011
\vol 167
\issue 2
\pages 214--221
\mathnet{http://mi.mathnet.ru/tmf6635}
\crossref{https://doi.org/10.4213/tmf6635}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3166366}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011TMP...167..584Q}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 167
\issue 2
\pages 584--589
\crossref{https://doi.org/10.1007/s11232-011-0044-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000291480900005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79958218347}
Linking options:
  • https://www.mathnet.ru/eng/tmf6635
  • https://doi.org/10.4213/tmf6635
  • https://www.mathnet.ru/eng/tmf/v167/i2/p214
  • This publication is cited in the following 51 articles:
    1. Xingjie Yan, Ruofan An, Yu Zhang, Xingxing Liu, “Orbital stability of the periodic peakons for the higher-order modified Camassa-Holm equation”, DCDS-S, 2024  crossref
    2. Dandan He, Tongjie Deng, Kelei Zhang, “Orbital stability of peakons and multi-peakons for a generalized quintic-septic Camassa-Holm type equation”, Quart. Appl. Math., 2024  crossref
    3. Bao-Feng Feng, Heng-Chun Hu, Han-Han Sheng, Wei Yin, Guo-Fu Yu, “Integrable Semi-Discretization for a Modified Camassa–Holm Equation with Cubic Nonlinearity”, SIGMA, 20 (2024), 091, 14 pp.  mathnet  crossref
    4. Wen-Yu Zhou, Shou-Fu Tian, Zhi-Qiang Li, “On Riemann–Hilbert problem and multiple high-order pole solutions to the cubic Camassa–Holm equation”, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 2024, 1  crossref
    5. Weifang Weng, Zhijun Qiao, Zhenya Yan, “Wave-breaking analysis and weak multi-peakon solutions for a generalized cubic–quintic Camassa–Holm type equation”, Monatsh Math, 200:3 (2023), 667  crossref
    6. Gezi Chong, Ying Fu, Hao Wang, “Orbital stability of periodic peakons for the higher-order modified Camassa–Holm equation”, Monatsh Math, 2023  crossref
    7. Ke Jiang, Feng Cao, “Lyapunov-type stability criterion for periodic generalized Camassa–Holm equations”, Nonlinear Analysis: Real World Applications, 74 (2023), 103940  crossref
    8. Qin G., Yan Zh., Guo B., “The Cauchy Problem and Wave-Breaking Phenomenon For a Generalized Sine-Type Forq/Mch Equation”, Mon.heft. Math., 198:3 (2022), 619–640  crossref  mathscinet  isi
    9. Qin G., Yan Zh., Guo B., “A Sine-Type Camassa-Holm Equation: Local Well-Posedness, Holder Continuity, and Wave-Breaking Analysis”, Mon.heft. Math., 2022  crossref  isi
    10. Qin G., Yan Zh., Guo B., “The Cauchy Problem and Multi-Peakons For the Mch-Novikov-Ch Equation With Quadratic and Cubic Nonlinearities”, J. Dyn. Differ. Equ., 2022  crossref  isi  scopus
    11. Li J., “Orbital Stability of Peakons For the Modified Camassa-Holm Equation”, Acta. Math. Sin.-English Ser., 38:1 (2022), 148–160  crossref  mathscinet  isi
    12. Han‐Han Sheng, Guo‐Fu Yu, Bao‐Feng Feng, “An integrable semidiscretization of the modified Camassa–Holm equation with linear dispersion term”, Stud Appl Math, 149:1 (2022), 230  crossref
    13. Haotian Wang, Qin Zhou, Wenjun Liu, “Exact analysis and elastic interaction of multi-soliton for a two-dimensional Gross-Pitaevskii equation in the Bose-Einstein condensation”, Journal of Advanced Research, 38 (2022), 179  crossref
    14. Aiyong Chen, Hao Yu, Xiaokai He, “2-Peakon Solutions and Non-uniqueness of the Fokas–Olver–Rosenau–Qiao Equation with Higher-Order Nonlinearity”, Bull. Malays. Math. Sci. Soc., 45:6 (2022), 3401  crossref
    15. Guoquan Qin, Zhenya Yan, Boling Guo, “Orbital stability of peakon solutions for a generalized higher-order Camassa–Holm equation”, Z. Angew. Math. Phys., 73:3 (2022)  crossref
    16. Yiling Yang, Engui Fan, “On the long-time asymptotics of the modified Camassa-Holm equation in space-time solitonic regions”, Advances in Mathematics, 402 (2022), 108340  crossref
    17. Zhang L., Qiao Zh., “Global-in-Time Solvability and Blow-Up For a Non-Isospectral Two-Component Cubic Camassa-Holm System in a Critical Besov Space”, J. Differ. Equ., 274 (2021), 414–460  crossref  mathscinet  isi
    18. Moon B., “Orbital Stability of Periodic Peakons For the Generalized Modified Camassa-Holm Equation”, Discret. Contin. Dyn. Syst.-Ser. S, 14:12 (2021), 4409–4437  crossref  mathscinet  isi  scopus
    19. Anco S.C. Wang B., “A Formula For Symmetry Recursion Operators From Non-Variational Symmetries of Partial Differential Equations”, Lett. Math. Phys., 111:3 (2021), 70  crossref  mathscinet  isi
    20. Devi A.D., Krishnakumar K., Sinuvasan R., Leach P.G.L., “Symmetries and Integrability of the Modified Camassa-Holm Equation With An Arbitrary Parameter”, Pramana-J. Phys., 95:2 (2021), 85  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:521
    Full-text PDF :217
    References:65
    First page:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025