Abstract:
We consider two initial boundary value problems on an interval with homogeneous Dirichlet conditions. These problems were proposed by M. I. Rabinovich and D. I. Trubetskov and are given by nonlinear fourth-order Sobolev-type equations. We prove the local-in-time existence of a strong generalized solution of one problem, and for both problems, we obtain sufficient conditions for the destruction of their strong generalized solutions in a finite time.
Citation:
M. O. Korpusov, “Destruction of solutions of wave equations in systems with distributed parameters”, TMF, 167:2 (2011), 206–213; Theoret. and Math. Phys., 167:2 (2011), 577–583
\Bibitem{Kor11}
\by M.~O.~Korpusov
\paper Destruction of solutions of wave equations in systems with distributed parameters
\jour TMF
\yr 2011
\vol 167
\issue 2
\pages 206--213
\mathnet{http://mi.mathnet.ru/tmf6634}
\crossref{https://doi.org/10.4213/tmf6634}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3166365}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011TMP...167..577K}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 167
\issue 2
\pages 577--583
\crossref{https://doi.org/10.1007/s11232-011-0043-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000291480900004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79958238863}
Linking options:
https://www.mathnet.ru/eng/tmf6634
https://doi.org/10.4213/tmf6634
https://www.mathnet.ru/eng/tmf/v167/i2/p206
This publication is cited in the following 2 articles:
M. O. Korpusov, E. A. Ovsyannikov, “Blow-up instability in non-linear wave models with distributed parameters”, Izv. Math., 84:3 (2020), 449–501
M. O. Korpusov, “Blow-up and global solubility in the classical sense of the Cauchy problem for a formally hyperbolic equation with a non-coercive source”, Izv. Math., 84:5 (2020), 930–959