Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2011, Volume 167, Number 2, Pages 206–213
DOI: https://doi.org/10.4213/tmf6634
(Mi tmf6634)
 

This article is cited in 2 scientific papers (total in 2 papers)

Destruction of solutions of wave equations in systems with distributed parameters

M. O. Korpusov

Lomonosov Moscow State University, Moscow, Russia
Full-text PDF (366 kB) Citations (2)
References:
Abstract: We consider two initial boundary value problems on an interval with homogeneous Dirichlet conditions. These problems were proposed by M. I. Rabinovich and D. I. Trubetskov and are given by nonlinear fourth-order Sobolev-type equations. We prove the local-in-time existence of a strong generalized solution of one problem, and for both problems, we obtain sufficient conditions for the destruction of their strong generalized solutions in a finite time.
Keywords: destruction, nonlinear analysis.
Received: 12.10.2010
English version:
Theoretical and Mathematical Physics, 2011, Volume 167, Issue 2, Pages 577–583
DOI: https://doi.org/10.1007/s11232-011-0043-9
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. O. Korpusov, “Destruction of solutions of wave equations in systems with distributed parameters”, TMF, 167:2 (2011), 206–213; Theoret. and Math. Phys., 167:2 (2011), 577–583
Citation in format AMSBIB
\Bibitem{Kor11}
\by M.~O.~Korpusov
\paper Destruction of solutions of wave equations in systems with distributed parameters
\jour TMF
\yr 2011
\vol 167
\issue 2
\pages 206--213
\mathnet{http://mi.mathnet.ru/tmf6634}
\crossref{https://doi.org/10.4213/tmf6634}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3166365}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011TMP...167..577K}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 167
\issue 2
\pages 577--583
\crossref{https://doi.org/10.1007/s11232-011-0043-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000291480900004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79958238863}
Linking options:
  • https://www.mathnet.ru/eng/tmf6634
  • https://doi.org/10.4213/tmf6634
  • https://www.mathnet.ru/eng/tmf/v167/i2/p206
  • This publication is cited in the following 2 articles:
    1. M. O. Korpusov, E. A. Ovsyannikov, “Blow-up instability in non-linear wave models with distributed parameters”, Izv. Math., 84:3 (2020), 449–501  mathnet  crossref  crossref  zmath  adsnasa  isi  elib
    2. M. O. Korpusov, “Blow-up and global solubility in the classical sense of the Cauchy problem for a formally hyperbolic equation with a non-coercive source”, Izv. Math., 84:5 (2020), 930–959  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:524
    Full-text PDF :240
    References:78
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025