Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2011, Volume 166, Number 3, Pages 366–387
DOI: https://doi.org/10.4213/tmf6617
(Mi tmf6617)
 

This article is cited in 11 scientific papers (total in 11 papers)

Super quasiperiodic wave solutions and asymptotic analysis for N=1 supersymmetric KdV-type equations

Y. C. Hona, Engui Fanb

a Department of mathematics, City university of Hong Kong, Hongkong SAR, China
b School of mathematical sciences and key laboratory of mathematics for nonlinear science, Fudan university, Shanghai, China
References:
Abstract: Based on a general multidimensional Riemann theta function and the super Hirota bilinear form, we extend the Hirota method to construct explicit super quasiperiodic (multiperiodic) wave solutions of N=1supersymmetric KdV-type equations in superspace. We show that the supersymmetric KdV equation does not have an N-periodic wave solution with arbitrary parameters for N2. In addition, an interesting influencing band occurs among the super quasiperiodic waves under the presence of a Grassmann variable. We also observe that the super quasiperiodic waves are symmetric about this band but collapse along with it. We present a limit procedure for analyzing the asymptotic properties of the super quasiperiodic waves and rigorously show that the super periodic wave solutions tend to super soliton solutions under some “small amplitude” limits.
Keywords: supersymmetric KdV-type equation, super Hirota bilinear method, Riemann theta function, super quasiperiodic wave solution, super soliton solution.
Received: 03.05.2010
Revised: 19.07.2010
English version:
Theoretical and Mathematical Physics, 2011, Volume 166, Issue 3, Pages 317–336
DOI: https://doi.org/10.1007/s11232-011-0026-x
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Y. C. Hon, Engui Fan, “Super quasiperiodic wave solutions and asymptotic analysis for N=1 supersymmetric KdV-type equations”, TMF, 166:3 (2011), 366–387; Theoret. and Math. Phys., 166:3 (2011), 317–336
Citation in format AMSBIB
\Bibitem{HonFan11}
\by Y.~C.~Hon, Engui~Fan
\paper Super quasiperiodic wave solutions and asymptotic analysis for $\mathcal N=1$ supersymmetric $\text{KdV}$-type equations
\jour TMF
\yr 2011
\vol 166
\issue 3
\pages 366--387
\mathnet{http://mi.mathnet.ru/tmf6617}
\crossref{https://doi.org/10.4213/tmf6617}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011TMP...166..317H}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 166
\issue 3
\pages 317--336
\crossref{https://doi.org/10.1007/s11232-011-0026-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000293733500004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79955096386}
Linking options:
  • https://www.mathnet.ru/eng/tmf6617
  • https://doi.org/10.4213/tmf6617
  • https://www.mathnet.ru/eng/tmf/v166/i3/p366
  • This publication is cited in the following 11 articles:
    1. Pengcheng Xin, Zhonglong Zhao, Yu Wang, “Quasi-periodic breathers and their dynamics to the Fokas system in nonlinear optics”, Wave Motion, 133 (2025), 103449  crossref
    2. XiaoXia Yang, Lingling Xue, Q P Liu, “N = 2 a = 1 supersymmetric KdV equation and its Darboux–Bäcklund transformations”, Commun. Theor. Phys., 76:11 (2024), 115002  crossref
    3. A. Mirza, M. ul Hassan, “Bilinearization and soliton solutions of a supersymmetric multicomponent coupled dispersionless integrable system”, Theoret. and Math. Phys., 201:3 (2019), 1723–1731  mathnet  crossref  crossref  mathscinet  isi  elib
    4. Mao H., Liu Q.P., “Backlund-Darboux Transformations and Discretizations of N=2 a =-2 Supersymmetric KdV Equation”, Phys. Lett. A, 382:5 (2018), 253–258  crossref  mathscinet  zmath  isi  scopus
    5. Zhao Zh., Chen Y., Han B., “On Periodic Wave Solutions of the KdV6 Equation Via Bilinear Backlund Transformation”, Optik, 140 (2017), 10–17  crossref  isi  scopus
    6. Zhao Zh., Han B., “Quasiperiodic wave solutions of a (2 + 1)-dimensional generalized breaking soliton equation via bilinear Bäcklund transformation”, Eur. Phys. J. Plus, 131:5 (2016), 128  crossref  mathscinet  isi  elib  scopus
    7. Wang Q., “Constructing Quasi-Periodic Wave Solutions of Differential-Difference Equation by Hirota Bilinear Method”, Z. Naturfors. Sect. A-J. Phys. Sci., 71:12 (2016), 1159–1165  crossref  isi  scopus
    8. Tian Shou-Fu M.P.-L., “On the Quasi-Periodic Wave Solutions and Asymptotic Analysis To a (3+1)-Dimensional Generalized Kadomtsev-Petviashvili Equation”, Commun. Theor. Phys., 62:2 (2014), 245–258  crossref  mathscinet  zmath  adsnasa  isi  scopus
    9. Gao X.N., Lou S.Y., Tang X.Ya., “Bosonization, Singularity Analysis, Nonlocal Symmetry Reductions and Exact Solutions of Supersymmetric KdV Equation”, J. High Energy Phys., 2013, no. 5, 029  crossref  mathscinet  zmath  isi  scopus
    10. Xue L.-L., Levi D., Liu Q.P., “Supersymmetric KdV Equation: Darboux Transformation and Discrete Systems”, J. Phys. A-Math. Theor., 46:50 (2013), 502001  crossref  mathscinet  zmath  isi  scopus
    11. Gao X.N., Lou S.Y., “Bosonization of supersymmetric KdV equation”, Phys. Lett. B, 707:1 (2012), 209–215  crossref  mathscinet  adsnasa  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:771
    Full-text PDF :198
    References:87
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025