Processing math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2011, Volume 166, Number 3, Pages 350–365
DOI: https://doi.org/10.4213/tmf6616
(Mi tmf6616)
 

This article is cited in 7 scientific papers (total in 7 papers)

Remark on the phase shift in the Kuzmak–Whitham ansatz

S. Yu. Dobrokhotov, D. S. Minenkov

Ishlinskii Institute for Problems in Mechanics, RAS, Moscow, Russia; Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Oblast, Russia
Full-text PDF (494 kB) Citations (7)
References:
Abstract: We consider one-phase (formal) asymptotic solutions in the Kuzmak–Whitham form for the nonlinear Klein–Gordon equation and for the Korteweg–de Vries equation. In this case, the leading asymptotic expansion term has the form X(S(x,t)/h+Φ(x,t),I(x,t),x,t)+O(h), where h1 is a small parameter and the phase S(x,t) and slowly changing parameters I(x,t) are to be found from the system of “averaged” Whitham equations. We obtain the equations for the phase shift Φ(x,t) by studying the second-order correction to the leading term. The corresponding procedure for finding the phase shift is then nonuniform with respect to the transition to a linear (and weakly nonlinear) case. Our observation, which essentially follows from papers by Haberman and collaborators, is that if we incorporate the phase shift Φ into the phase and adjust the parameter ˜I by setting ˜S=S+hΦ+O(h2), ˜I=I+hI1+O(h2), then the functions ˜S(x,t,h) and ˜I(x,t,h) become solutions of the Cauchy problem for the same Whitham system but with modified initial conditions. These functions completely determine the leading asymptotic term, which is X(˜S(x,t,h)/h,˜I(x,t,h),x,t)+O(h).
Keywords: rapidly oscillating one-phase asymptotic solution, nonlinear equation, Whitham method, phase shift.
Received: 06.09.2010
English version:
Theoretical and Mathematical Physics, 2011, Volume 166, Issue 3, Pages 303–316
DOI: https://doi.org/10.1007/s11232-011-0025-y
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. Yu. Dobrokhotov, D. S. Minenkov, “Remark on the phase shift in the Kuzmak–Whitham ansatz”, TMF, 166:3 (2011), 350–365; Theoret. and Math. Phys., 166:3 (2011), 303–316
Citation in format AMSBIB
\Bibitem{DobMin11}
\by S.~Yu.~Dobrokhotov, D.~S.~Minenkov
\paper Remark on the~phase shift in the~Kuzmak--Whitham ansatz
\jour TMF
\yr 2011
\vol 166
\issue 3
\pages 350--365
\mathnet{http://mi.mathnet.ru/tmf6616}
\crossref{https://doi.org/10.4213/tmf6616}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3165817}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011TMP...166..303D}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 166
\issue 3
\pages 303--316
\crossref{https://doi.org/10.1007/s11232-011-0025-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000293733500003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79955093965}
Linking options:
  • https://www.mathnet.ru/eng/tmf6616
  • https://doi.org/10.4213/tmf6616
  • https://www.mathnet.ru/eng/tmf/v166/i3/p350
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:752
    Full-text PDF :260
    References:99
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025