Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2011, Volume 166, Number 2, Pages 163–215
DOI: https://doi.org/10.4213/tmf6603
(Mi tmf6603)
 

This article is cited in 43 scientific papers (total in 43 papers)

Topological expansion of the $\beta$-ensemble model and quantum algebraic geometry in the sectorwise approach

L. O. Chekhovabc, B. Eynardd, O. Marchald

a Institute for Theoretical and Experimental Physics, Moscow, Russia
b Steklov Mathematical Institute, Moscow, Russia
c Laboratoire Poncelet, Moscow, Russia
d Institite de Physique Th\'eorique, Centre des Etudes Atomiques, Gif-sur-Yvette, France
References:
Abstract: We construct the solution of the loop equations of the $\beta$-ensemble model in a form analogous to the solution in the case of the Hermitian matrices $\beta=1$. The solution for $\beta=1$ is expressed in terms of the algebraic spectral curve given by $y^2=U(x)$. The spectral curve for arbitrary $\beta$ converts into the Schrödinger equation $\bigl((\hbar\partial)^2-U(x)\bigr)\psi(x)=0$, where $\hbar\propto \bigl(\sqrt\beta-1/\sqrt\beta\,\bigr)/N$. The basic ingredients of the method based on the algebraic solution retain their meaning, but we use an alternative approach to construct a solution of the loop equations in which the resolvents are given separately in each sector. Although this approach turns out to be more involved technically, it allows consistently defining the $\mathcal B$-cycle structure for constructing the quantum algebraic curve (a D-module of the form $y^2-U(x)$, where $[y,x]=\hbar$) and explicitly writing the correlation functions and the corresponding symplectic invariants $\mathcal F_h$ or the terms of the free energy in an $1/N^2$-expansion at arbitrary $\hbar$. The set of “flat”; coordinates includes the potential times $t_k$ and the occupation numbers $\widetilde{\epsilon}_\alpha$. We define and investigate the properties of the $\mathcal A$- and $\mathcal B$-cycles, forms of the first, second, and third kinds, and the Riemann bilinear identities. These identities allow finding the singular part of $\mathcal F_0$, which depends only on $\widetilde{\epsilon}_\alpha$.
Keywords: Schrödinger equation, Bergman kernel, correlation function, Riemann identity, flat coordinates, Riccati equation.
Received: 18.08.2010
Revised: 13.09.2010
English version:
Theoretical and Mathematical Physics, 2011, Volume 166, Issue 2, Pages 141–185
DOI: https://doi.org/10.1007/s11232-011-0012-3
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: L. O. Chekhov, B. Eynard, O. Marchal, “Topological expansion of the $\beta$-ensemble model and quantum algebraic geometry in the sectorwise approach”, TMF, 166:2 (2011), 163–215; Theoret. and Math. Phys., 166:2 (2011), 141–185
Citation in format AMSBIB
\Bibitem{CheEynMar11}
\by L.~O.~Chekhov, B.~Eynard, O.~Marchal
\paper Topological expansion of the~$\beta$-ensemble model and quantum algebraic geometry in the~sectorwise approach
\jour TMF
\yr 2011
\vol 166
\issue 2
\pages 163--215
\mathnet{http://mi.mathnet.ru/tmf6603}
\crossref{https://doi.org/10.4213/tmf6603}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2849645}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011TMP...166..141C}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 166
\issue 2
\pages 141--185
\crossref{https://doi.org/10.1007/s11232-011-0012-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000289209500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79953677510}
Linking options:
  • https://www.mathnet.ru/eng/tmf6603
  • https://doi.org/10.4213/tmf6603
  • https://www.mathnet.ru/eng/tmf/v166/i2/p163
  • This publication is cited in the following 43 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:825
    Full-text PDF :221
    References:98
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024