Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2011, Volume 166, Number 2, Pages 216–224
DOI: https://doi.org/10.4213/tmf6604
(Mi tmf6604)
 

This article is cited in 3 scientific papers (total in 3 papers)

An integral relation for tensor polynomials

P. A. Vshivtseva, V. I. Denisov, I. P. Denisova

Lomonosov Moscow State University, Moscow, Russia
Full-text PDF (373 kB) Citations (3)
References:
Abstract: We prove two lemmas and one theorem that allow integrating the product of an arbitrary number of unit vectors and the Legendre polynomials over a sphere of arbitrary radius. Such integral tensor products appear in solving inhomogeneous Helmholtz equations whose right-hand side is proportional to the product of a nonfixed number of unit vectors.
Keywords: tensor relation, tensor Legendre polynomial, Gegenbauer theorem, pseudo-Riemannian geometry.
Received: 18.05.2010
English version:
Theoretical and Mathematical Physics, 2011, Volume 166, Issue 2, Pages 186–193
DOI: https://doi.org/10.1007/s11232-011-0013-2
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: P. A. Vshivtseva, V. I. Denisov, I. P. Denisova, “An integral relation for tensor polynomials”, TMF, 166:2 (2011), 216–224; Theoret. and Math. Phys., 166:2 (2011), 186–193
Citation in format AMSBIB
\Bibitem{VshDenDen11}
\by P.~A.~Vshivtseva, V.~I.~Denisov, I.~P.~Denisova
\paper An~integral relation for tensor polynomials
\jour TMF
\yr 2011
\vol 166
\issue 2
\pages 216--224
\mathnet{http://mi.mathnet.ru/tmf6604}
\crossref{https://doi.org/10.4213/tmf6604}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3165805}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011TMP...166..186V}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 166
\issue 2
\pages 186--193
\crossref{https://doi.org/10.1007/s11232-011-0013-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000289209500002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79953690854}
Linking options:
  • https://www.mathnet.ru/eng/tmf6604
  • https://doi.org/10.4213/tmf6604
  • https://www.mathnet.ru/eng/tmf/v166/i2/p216
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024