Processing math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2010, Volume 164, Number 3, Pages 363–367
DOI: https://doi.org/10.4213/tmf6545
(Mi tmf6545)
 

This article is cited in 8 scientific papers (total in 8 papers)

Generalized entropy of the Heisenberg spin chain

A. R. Itsa, V. E. Korepinb

a Department of Mathematical Sciences, Indiana University--Purdue University Indianapolis, Indianapolis, USA
b Yang Institute for Theoretical Physics, State University of New York, Stony Brook, New York, USA
Full-text PDF (354 kB) Citations (8)
References:
Abstract: We consider the XY quantum spin chain in a transverse magnetic field. We consider the Rényi entropy of a block of neighboring spins at zero temperature on an infinite lattice. the Rényi entropy is essentially the trace of some power α of the density matrix of the block. We calculate the entropy of the large block in terms of Klein's elliptic λ-function. We study the limit entropy as a function of its parameter α. We show that the Rényi entropy is essentially an automorphic function with respect to a certain subgroup of the modular group. Using this, we derive the transformation properties of the Rényi entropy under the map αα1.
Keywords: quantum entanglement, spin chain, Bethe ansatz.
English version:
Theoretical and Mathematical Physics, 2010, Volume 164, Issue 3, Pages 1136–1139
DOI: https://doi.org/10.1007/s11232-010-0091-6
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. R. Its, V. E. Korepin, “Generalized entropy of the Heisenberg spin chain”, TMF, 164:3 (2010), 363–367; Theoret. and Math. Phys., 164:3 (2010), 1136–1139
Citation in format AMSBIB
\Bibitem{ItsKor10}
\by A.~R.~Its, V.~E.~Korepin
\paper Generalized entropy of the~Heisenberg spin chain
\jour TMF
\yr 2010
\vol 164
\issue 3
\pages 363--367
\mathnet{http://mi.mathnet.ru/tmf6545}
\crossref{https://doi.org/10.4213/tmf6545}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010TMP...164.1136I}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 164
\issue 3
\pages 1136--1139
\crossref{https://doi.org/10.1007/s11232-010-0091-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000282695500004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77957985980}
Linking options:
  • https://www.mathnet.ru/eng/tmf6545
  • https://doi.org/10.4213/tmf6545
  • https://www.mathnet.ru/eng/tmf/v164/i3/p363
  • This publication is cited in the following 8 articles:
    1. Jansen N.D., Loucks M., Gilbert S., Fleming-Dittenber C., Egbert J., Hunt K.L.C., “Shannon and Von Neumann Entropies of Multi-Qubit Schrodinger'S Cat States”, Phys. Chem. Chem. Phys., 24:13 (2022), 7666–7681  crossref  isi
    2. F. Eghbalifam, M. A. Jafarizadeh, S. Nami, “Entanglement Entropy Scaling Law in the Ground State of Supersymmetric Fermion Lattice Model”, J. Exp. Theor. Phys., 134:1 (2022), 24  crossref
    3. Anchal Ahalawat, Korra Sathya Babu, Ashok Kumar Turuk, Sanjeev Patel, “A low-rate DDoS detection and mitigation for SDN using Renyi Entropy with Packet Drop”, Journal of Information Security and Applications, 68 (2022), 103212  crossref
    4. Li Zh., “Algebro-Geometric Constructions of the Heisenberg Hierarchy”, Int. J. Nonlinear Sci. Numer. Simul., 22:6 (2021), 685–703  crossref  mathscinet  isi
    5. Li Zh., Geng X., “Quasi-Periodic Solutions of the Heisenberg Hierarchy”, Anal. Math. Phys., 11:2 (2021), 92  crossref  mathscinet  isi
    6. Pezone A., Tramontano A., Scala G., Cuomo M., Riccio P., De Nicola S., Porcellini A., Chiariotti L., Avvedimento V E., “Tracing and Tracking Epiallele Families in Complex Dna Populations”, NAR Genom. Bioinform., 2:4 (2020), lqaa096  crossref  isi
    7. Avijit Misra, Anindya Biswas, Arun K. Pati, Aditi Sen(De), Ujjwal Sen, “Quantum correlation with sandwiched relative entropies: Advantageous as order parameter in quantum phase transitions”, Phys. Rev. E, 91:5 (2015)  crossref
    8. Sonnino G., Steinbrecher G., “Generalized Extensive Entropies For Studying Dynamical Systems in Highly Anisotropic Phase Spaces”, Phys. Rev. E, 89:6 (2014), 062106  crossref  adsnasa  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:798
    Full-text PDF :272
    References:93
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025