Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2010, Volume 164, Number 3, Pages 354–362
DOI: https://doi.org/10.4213/tmf6544
(Mi tmf6544)
 

This article is cited in 22 scientific papers (total in 22 papers)

Bogoliubov equations and functional mechanics

I. V. Volovich

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: The functional classical mechanics based on the probability approach, where a particle is described not by a trajectory in the phase space but by a probability distribution, was recently proposed for solving the irreversibility problem, i.e., the problem of matching the time reversibility of microscopic dynamics equations and the irreversibility of macrosystem dynamics. In the framework of functional mechanics, we derive Bogoliubov–Boltzmann-type equations for finitely many particles. We show that a closed equation for a one-particle distribution function can be rigorously derived in functional mechanics without any additional assumptions required in the Bogoliubov method. We consider the possibility of using diffusion processes and the Fokker–Planck–Kolmogorov equation to describe isolated particles.
Keywords: Boltzmann equation, Bogoliubov equation, kinetic theory.
English version:
Theoretical and Mathematical Physics, 2010, Volume 164, Issue 3, Pages 1128–1135
DOI: https://doi.org/10.1007/s11232-010-0090-7
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: I. V. Volovich, “Bogoliubov equations and functional mechanics”, TMF, 164:3 (2010), 354–362; Theoret. and Math. Phys., 164:3 (2010), 1128–1135
Citation in format AMSBIB
\Bibitem{Vol10}
\by I.~V.~Volovich
\paper Bogoliubov equations and functional mechanics
\jour TMF
\yr 2010
\vol 164
\issue 3
\pages 354--362
\mathnet{http://mi.mathnet.ru/tmf6544}
\crossref{https://doi.org/10.4213/tmf6544}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010TMP...164.1128V}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 164
\issue 3
\pages 1128--1135
\crossref{https://doi.org/10.1007/s11232-010-0090-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000282695500003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77958050414}
Linking options:
  • https://www.mathnet.ru/eng/tmf6544
  • https://doi.org/10.4213/tmf6544
  • https://www.mathnet.ru/eng/tmf/v164/i3/p354
  • This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024