Abstract:
Using the diagram technique in the atomic representation in the generalized chaotic phase approximation, we solve the problem of calculating the dynamical magnetic susceptibility of the periodic Anderson model in the strong electron correlation regime. We express the dynamical magnetic susceptibility in terms of four Matsubara Green's functions describing partial contributions, which are calculated based on exact solutions of integral equations.
Keywords:
periodic Anderson model, generalized chaotic phase approximation, dynamical magnetic susceptibility.
Citation:
V. V. Val'kov, D. M. Dzebisashvili, “Dynamical magnetic susceptibility of the periodic Anderson model in the chaotic phase approximation”, TMF, 164:2 (2010), 309–320; Theoret. and Math. Phys., 164:2 (2010), 1089–1099
\Bibitem{ValDze10}
\by V.~V.~Val'kov, D.~M.~Dzebisashvili
\paper Dynamical magnetic susceptibility of the~periodic Anderson model in the~chaotic phase approximation
\jour TMF
\yr 2010
\vol 164
\issue 2
\pages 309--320
\mathnet{http://mi.mathnet.ru/tmf6541}
\crossref{https://doi.org/10.4213/tmf6541}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010TMP...164.1089V}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 164
\issue 2
\pages 1089--1099
\crossref{https://doi.org/10.1007/s11232-010-0087-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000282705000010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77956447981}
Linking options:
https://www.mathnet.ru/eng/tmf6541
https://doi.org/10.4213/tmf6541
https://www.mathnet.ru/eng/tmf/v164/i2/p309
This publication is cited in the following 2 articles:
Val'kov V.V. Zlotnikov A.O., “Manifestation of spin-charge fluctuations in the spectral and thermodynamic properties of quasi-two-dimensional rare-earth intermetallic compounds”, Low Temp. Phys., 43:2 (2017), 191–199
V. V. Val'kov, A. O. Zlotnikov, T. A. Val'kova, “Effective temperature scattering matrix and kinematic mechanism of cooper instability in antiferromagnetic rare-earth intermetallides”, Bull. Russ. Acad. Sci. Phys., 79:6 (2015), 746