Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2010, Volume 164, Number 2, Pages 299–308
DOI: https://doi.org/10.4213/tmf6540
(Mi tmf6540)
 

This article is cited in 4 scientific papers (total in 4 papers)

Rodrigues solutions of the Dirac equation for shape-invariant potentials: Master function approach

H. Panahi, L. Jahangiry

Department of Physics, Guilan University, Rasht, Iran
Full-text PDF (368 kB) Citations (4)
References:
Abstract: We show that a Schrödinger-like differential equation for the upper spinor component, derived from the Dirac equation for a charged spinor in spherically symmetric electromagnetic potentials, can be transformed into the Schrödinger equation with some shape-invariant potentials. By choosing different electrostatic potentials and relativistic energies and also introducing new functions and changing the variables, we show that this equation transforms into the differential equations in mathematical physics. We solve these equations using the master function approach and write the spinor wave functions in terms of Rodrigues polynomials associated with these differential equations.
Keywords: Dirac equation, Rodrigues polynomial, shape-invariant potential, master function approach.
Received: 25.10.2009
English version:
Theoretical and Mathematical Physics, 2010, Volume 164, Issue 2, Pages 1081–1088
DOI: https://doi.org/10.1007/s11232-010-0086-3
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: H. Panahi, L. Jahangiry, “Rodrigues solutions of the Dirac equation for shape-invariant potentials: Master function approach”, TMF, 164:2 (2010), 299–308; Theoret. and Math. Phys., 164:2 (2010), 1081–1088
Citation in format AMSBIB
\Bibitem{PanJah10}
\by H.~Panahi, L.~Jahangiry
\paper Rodrigues solutions of the~Dirac equation for shape-invariant potentials: Master function approach
\jour TMF
\yr 2010
\vol 164
\issue 2
\pages 299--308
\mathnet{http://mi.mathnet.ru/tmf6540}
\crossref{https://doi.org/10.4213/tmf6540}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010TMP...164.1081P}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 164
\issue 2
\pages 1081--1088
\crossref{https://doi.org/10.1007/s11232-010-0086-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000282705000009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77956437852}
Linking options:
  • https://www.mathnet.ru/eng/tmf6540
  • https://doi.org/10.4213/tmf6540
  • https://www.mathnet.ru/eng/tmf/v164/i2/p299
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:380
    Full-text PDF :172
    References:57
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024