Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2010, Volume 162, Number 3, Pages 408–415
DOI: https://doi.org/10.4213/tmf6478
(Mi tmf6478)
 

This article is cited in 1 scientific paper (total in 1 paper)

The action variable and frequency of a relativistic harmonic oscillator

M. K. Balasubramanya

Department of Physical and Environmental Sciences, Texas A&M University-Corpus Christi, Corpus Christi, USA
Full-text PDF (299 kB) Citations (1)
References:
Abstract: We present three series representations of the frequency of a relativistic harmonic oscillator. The first two representations use two equivalent forms of the action variable. The third representation involves determining its period by direct integration. The energy dependance of the oscillator frequency is manifestly seen in all three representations. We demonstrate that all three forms yield the same expression for the frequency in the case of the weakly relativistic oscillator and have an identical nonrelativistic limit.
Keywords: Hamilton–Jacobi theory, action variable, relativity, simple harmonic oscillator.
Received: 24.03.2009
English version:
Theoretical and Mathematical Physics, 2010, Volume 162, Issue 3, Pages 341–346
DOI: https://doi.org/10.1007/s11232-010-0026-2
Bibliographic databases:
Language: Russian
Citation: M. K. Balasubramanya, “The action variable and frequency of a relativistic harmonic oscillator”, TMF, 162:3 (2010), 408–415; Theoret. and Math. Phys., 162:3 (2010), 341–346
Citation in format AMSBIB
\Bibitem{Bal10}
\by M.~K.~Balasubramanya
\paper The~action variable and frequency of a~relativistic harmonic oscillator
\jour TMF
\yr 2010
\vol 162
\issue 3
\pages 408--415
\mathnet{http://mi.mathnet.ru/tmf6478}
\crossref{https://doi.org/10.4213/tmf6478}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2682132}
\zmath{https://zbmath.org/?q=an:1195.70026}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010TMP...162..341B}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 162
\issue 3
\pages 341--346
\crossref{https://doi.org/10.1007/s11232-010-0026-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000276724000006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952052937}
Linking options:
  • https://www.mathnet.ru/eng/tmf6478
  • https://doi.org/10.4213/tmf6478
  • https://www.mathnet.ru/eng/tmf/v162/i3/p408
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024