Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2009, Volume 160, Number 3, Pages 517–533
DOI: https://doi.org/10.4213/tmf6413
(Mi tmf6413)
 

This article is cited in 3 scientific papers (total in 3 papers)

Molecular random walk and a symmetry group of the Bogoliubov equation

Yu. E. Kuzovlev

Galkin Donetsk Physical and Technical Institute, National Academy of Sciences Ukraine, Donetsk, Ukraine
Full-text PDF (493 kB) Citations (3)
References:
Abstract: We consider the statistics of molecular random walks in fluids using the Bogoliubov equation for the generating functional of the distribution functions. We obtain the symmetry group of this equation and its solutions as functions of the medium density. It induces a series of exact relations between the probability distribution of the total path of a walking test particle and its correlations with the environment and consequently imposes serious constraints on the possible form of the path distribution. In particular, the Gaussian asymptotic form of the distribution is definitely forbidden (even for the Boltzmann–Grad gas), but the diffusive asymptotic form with power-law tails (cut off by the ballistic flight length) is allowed.
Keywords: BBGKY equation, Bogoliubov generating functional, molecular random walk, diffusion, kinetic theory of gases and liquids.
Received: 22.07.2008
Revised: 25.12.2008
English version:
Theoretical and Mathematical Physics, 2009, Volume 160, Issue 3, Pages 1301–1315
DOI: https://doi.org/10.1007/s11232-009-0117-0
Bibliographic databases:
Language: Russian
Citation: Yu. E. Kuzovlev, “Molecular random walk and a symmetry group of the Bogoliubov equation”, TMF, 160:3 (2009), 517–533; Theoret. and Math. Phys., 160:3 (2009), 1301–1315
Citation in format AMSBIB
\Bibitem{Kuz09}
\by Yu.~E.~Kuzovlev
\paper Molecular random walk and a~symmetry group of the~Bogoliubov equation
\jour TMF
\yr 2009
\vol 160
\issue 3
\pages 517--533
\mathnet{http://mi.mathnet.ru/tmf6413}
\crossref{https://doi.org/10.4213/tmf6413}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2604587}
\zmath{https://zbmath.org/?q=an:1180.82083}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009TMP...160.1301K}
\transl
\jour Theoret. and Math. Phys.
\yr 2009
\vol 160
\issue 3
\pages 1301--1315
\crossref{https://doi.org/10.1007/s11232-009-0117-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000271029500007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350543465}
Linking options:
  • https://www.mathnet.ru/eng/tmf6413
  • https://doi.org/10.4213/tmf6413
  • https://www.mathnet.ru/eng/tmf/v160/i3/p517
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:568
    Full-text PDF :211
    References:94
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024