Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2009, Volume 160, Number 3, Pages 534–544
DOI: https://doi.org/10.4213/tmf6414
(Mi tmf6414)
 

This article is cited in 5 scientific papers (total in 5 papers)

Separability and entanglement in tripartite states

Shunlong Luoa, Wei Sunb

a Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, People's Republic of China
b Department of Mathematics and Statistics, Concordia University, Montreal, Quebec, Canada
Full-text PDF (379 kB) Citations (5)
References:
Abstract: While classical correlations can be freely distributed among many systems, this is not true for entanglement and quantum correlations. If a quantum system $S^a$ is entangled with another quantum system $S^b$, then its entanglement with any third quantum system $S^c$ cannot be arbitrary. This is the celebrated monogamy of entanglement. Implicit in this general statement is the plausible belief that only entanglement between the systems $S^a$ and $S^b$ constrains the entanglement between $S^a$ and the third system $S^c$. We demonstrate that even classical correlations between $S^a$ and $S^b$ may impose surprisingly stringent restrictions on the possible entanglement between $S^a$ and $S^c$. In particular, perfect bipartite classical correlations and full entanglement cannot coexist in any tripartite state. An intuitive explanation of this monogamy of hybrid classical and quantum correlations might be that the system $S^a$ has a correlating capability, which cannot be used to establish any entanglement with a third system (but can still be used to establish classical correlations) if it is exhausted when correlated with $S^b$ (in either a classical or quantum fashion). This may be interpreted as an alternate version of monogamy.
Keywords: correlation, classical state, tripartite state, entanglement, separability.
Received: 26.11.2008
English version:
Theoretical and Mathematical Physics, 2009, Volume 160, Issue 3, Pages 1316–1323
DOI: https://doi.org/10.1007/s11232-009-0118-z
Bibliographic databases:
Language: Russian
Citation: Shunlong Luo, Wei Sun, “Separability and entanglement in tripartite states”, TMF, 160:3 (2009), 534–544; Theoret. and Math. Phys., 160:3 (2009), 1316–1323
Citation in format AMSBIB
\Bibitem{LuoSun09}
\by Shunlong~Luo, Wei~Sun
\paper Separability and entanglement in tripartite states
\jour TMF
\yr 2009
\vol 160
\issue 3
\pages 534--544
\mathnet{http://mi.mathnet.ru/tmf6414}
\crossref{https://doi.org/10.4213/tmf6414}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2604588}
\zmath{https://zbmath.org/?q=an:1184.81014}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009TMP...160.1316L}
\transl
\jour Theoret. and Math. Phys.
\yr 2009
\vol 160
\issue 3
\pages 1316--1323
\crossref{https://doi.org/10.1007/s11232-009-0118-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000271029500008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350530390}
Linking options:
  • https://www.mathnet.ru/eng/tmf6414
  • https://doi.org/10.4213/tmf6414
  • https://www.mathnet.ru/eng/tmf/v160/i3/p534
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024