Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2009, Volume 158, Number 3, Pages 425–443
DOI: https://doi.org/10.4213/tmf6325
(Mi tmf6325)
 

This article is cited in 23 scientific papers (total in 23 papers)

The number of bound states of a one-particle Hamiltonian on a three-dimensional lattice

S. N. Lakaeva, I. N. Bozorovb

a A. Navoi Samarkand State University
b Uzbekistan Academy of Sciences, Samarkand Branch
References:
Abstract: We consider the Hamiltonian $\hat h_{\mu\lambda}$, $\mu,\lambda\ge0$, describing the motion of one quantum particle on a three-dimensional lattice in an external field. We investigate the number of eigenvalues and their arrangement depending on the value of the interaction energy for $\mu\ge0$ and $\lambda\ge0$.
Keywords: one-particle Hamiltonian, continuous spectrum, virtual level, eigenvalue, Birman—Schwinger operator, Fredholm determinant.
Received: 15.04.2008
Revised: 23.06.2008
English version:
Theoretical and Mathematical Physics, 2009, Volume 158, Issue 3, Pages 360–376
DOI: https://doi.org/10.1007/s11232-009-0030-6
Bibliographic databases:
Language: Russian
Citation: S. N. Lakaev, I. N. Bozorov, “The number of bound states of a one-particle Hamiltonian on a three-dimensional lattice”, TMF, 158:3 (2009), 425–443; Theoret. and Math. Phys., 158:3 (2009), 360–376
Citation in format AMSBIB
\Bibitem{LakBoz09}
\by S.~N.~Lakaev, I.~N.~Bozorov
\paper The~number of bound states of a~one-particle Hamiltonian on a~three-dimensional lattice
\jour TMF
\yr 2009
\vol 158
\issue 3
\pages 425--443
\mathnet{http://mi.mathnet.ru/tmf6325}
\crossref{https://doi.org/10.4213/tmf6325}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2547452}
\zmath{https://zbmath.org/?q=an:1175.81100}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009TMP...158..360L}
\elib{https://elibrary.ru/item.asp?id=14713203}
\transl
\jour Theoret. and Math. Phys.
\yr 2009
\vol 158
\issue 3
\pages 360--376
\crossref{https://doi.org/10.1007/s11232-009-0030-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000264844000009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-63849131800}
Linking options:
  • https://www.mathnet.ru/eng/tmf6325
  • https://doi.org/10.4213/tmf6325
  • https://www.mathnet.ru/eng/tmf/v158/i3/p425
  • This publication is cited in the following 23 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:639
    Full-text PDF :239
    References:87
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024