Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2009, Volume 158, Number 3, Pages 419–424
DOI: https://doi.org/10.4213/tmf6324
(Mi tmf6324)
 

This article is cited in 129 scientific papers (total in 129 papers)

Fractional integro-differential equations for electromagnetic waves in dielectric media

V. E. Tarasov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
References:
Abstract: We prove that the electromagnetic fields in dielectric media whose susceptibility follows a fractional power-law dependence in a wide frequency range can be described by differential equations with time derivatives of noninteger order. We obtain fractional integro-differential equations for electromagnetic waves in a dielectric. The electromagnetic fields in dielectrics demonstrate a fractional power-law relaxation. The fractional integro-differential equations for electromagnetic waves are common to a wide class of dielectric media regardless of the type of physical structure, the chemical composition, or the nature of the polarizing species (dipoles, electrons, or ions).
Keywords: fractional integro-differentiation, fractional damping, universal response, electromagnetic field, dielectric medium.
Received: 18.12.2007
Revised: 24.06.2008
English version:
Theoretical and Mathematical Physics, 2009, Volume 158, Issue 3, Pages 355–359
DOI: https://doi.org/10.1007/s11232-009-0029-z
Bibliographic databases:
Language: Russian
Citation: V. E. Tarasov, “Fractional integro-differential equations for electromagnetic waves in dielectric media”, TMF, 158:3 (2009), 419–424; Theoret. and Math. Phys., 158:3 (2009), 355–359
Citation in format AMSBIB
\Bibitem{Tar09}
\by V.~E.~Tarasov
\paper Fractional integro-differential equations for electromagnetic waves in dielectric media
\jour TMF
\yr 2009
\vol 158
\issue 3
\pages 419--424
\mathnet{http://mi.mathnet.ru/tmf6324}
\crossref{https://doi.org/10.4213/tmf6324}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2547451}
\zmath{https://zbmath.org/?q=an:1177.78020}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009TMP...158..355T}
\transl
\jour Theoret. and Math. Phys.
\yr 2009
\vol 158
\issue 3
\pages 355--359
\crossref{https://doi.org/10.1007/s11232-009-0029-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000264844000008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-63849151360}
Linking options:
  • https://www.mathnet.ru/eng/tmf6324
  • https://doi.org/10.4213/tmf6324
  • https://www.mathnet.ru/eng/tmf/v158/i3/p419
  • This publication is cited in the following 129 articles:
    1. Tianyuan Liu, Haixiang Zhang, Xuehua Yang, “The ADI compact difference scheme for three-dimensional integro-partial differential equation with three weakly singular kernels”, J. Appl. Math. Comput., 2025  crossref
    2. Yifei Wang, Li Zhang, Hu Li, “A numerical approach for solving fractional order pantograph mixed Volterra-Fredholm delay-integro-differential equations”, Numer Algor, 2025  crossref
    3. M. H. Heydari, Dumitru Baleanu, M. Bayram, “A cardinal-based approximation approach for a family of nonlinear fractional integro-differential equations involving Caputo tempered derivative”, J. Appl. Math. Comput., 2025  crossref
    4. Aman Singh, Vineet Kumar Singh, “Computational Technique for Nonlinear Weakly Singular Two Dimension Volterra Integral Equations with Combined Logarithmic Kernel: Analytical and Computational Consideration II”, J Anal, 2025  crossref
    5. Mohammed Al-Refai, Arran Fernandez, “Comparison principles for a class of general integro-differential inequalities with applications”, Comp. Appl. Math., 43:2 (2024)  crossref
    6. Jingna Zhang, Yue Zhao, Yifa Tang, “Adaptive loss weighting auxiliary output fPINNs for solving fractional partial integro-differential equations”, Physica D: Nonlinear Phenomena, 460 (2024), 134066  crossref
    7. Hongli Sun, Yanfei Lu, “A novel approach for solving linear Fredholm integro-differential equations via LS-SVM algorithm”, Applied Mathematics and Computation, 470 (2024), 128557  crossref
    8. Vinita Devi, Rahul Kumar Maurya, Vineet Kumar Singh, “A stable operational matrix based computational approach for multi-term fractional wave model arise in a dielectric medium”, Chinese Journal of Physics, 87 (2024), 556  crossref
    9. M. H. Heydari, Sh. Zhagharian, C. Cattani, “A projection method based on the piecewise Chebyshev cardinal functions for nonlinear stochastic ABC fractional integro‐differential equations”, Math Methods in App Sciences, 47:6 (2024), 4530  crossref
    10. Hind Sweis, Nabil Shawagfeh, Omar Abu Arqub, “Delay volterra integrodifferential models of fractional orders and exponential kernels: Well-posedness theoretical results and Legendre–Galerkin shifted approximations”, Mod. Phys. Lett. B, 2024  crossref
    11. Kamlesh Kumar, A. K. Pandey, Rajesh K. Pandey, “High Order Numerical Scheme for Generalized Fractional Diffusion Equations”, Int. J. Appl. Comput. Math, 10:3 (2024)  crossref
    12. Javad A Asadzade, Nazim I Mahmudov, “Euler-Maruyama approximation for stochastic fractional neutral integro-differential equations with weakly singular kernel”, Phys. Scr., 99:7 (2024), 075281  crossref
    13. Akilandeeswari Aruchamy, Saranya Rayappan, Annapoorani Natarajan, “Global existence and stability results for a time-fractional diffusion equation with variable exponents”, Arab. J. Math., 2024  crossref
    14. Sunil Kumar, Poonam Yadav, Vineet Kumar Singh, “Product integration techniques for fractional integro‐differential equations”, Math Methods in App Sciences, 2024  crossref
    15. Damian Trofimowicz, Tomasz P. Stefański, Piotr Pietruszka, Jacek Gulgowski, 2024 25th International Microwave and Radar Conference (MIKON), 2024, 137  crossref
    16. Aman Singh, Nikhil Srivastava, Yashveer Kumar, Vineet Kumar Singh, “Computational Approach for Two-Dimensional Fractional Integro-Differential Equations”, Int. J. Appl. Comput. Math, 10:5 (2024)  crossref
    17. Sameeha A. Raad, Mohammed A. Abdou, “An Algorithm for the Solution of Integro-Fractional Differential Equations with a Generalized Symmetric Singular Kernel”, Fractal Fract, 8:11 (2024), 644  crossref
    18. Moufida Guechi, Ali Khalouta, “New results regarding the existence, uniqueness and convergence of the solution for nonlinear fractional Volterra integro-differential equations via Caputo-Fabrizio operator”, rev.colomb.mat, 58:1 (2024), 81  crossref
    19. Jingna Zhang, Jingyun Lv, Jianfei Huang, Yifa Tang, “A fast Euler–Maruyama method for Riemann–Liouville stochastic fractional nonlinear differential equations”, Physica D: Nonlinear Phenomena, 446 (2023), 133685  crossref
    20. Babak Azarnavid, “The Bernoulli polynomials reproducing kernel method for nonlinear Volterra integro-differential equations of fractional order with convergence analysis”, Comp. Appl. Math., 42:1 (2023)  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:1368
    Full-text PDF :347
    References:100
    First page:42
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025