Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2009, Volume 158, Number 3, Pages 355–369
DOI: https://doi.org/10.4213/tmf6319
(Mi tmf6319)
 

This article is cited in 9 scientific papers (total in 9 papers)

Integrable $sl(N,\mathbb C)$ tops as Calogero–Moser systems

A. V. Smirnov

Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)
Full-text PDF (402 kB) Citations (9)
References:
Abstract: We show a relation between systems of integrable tops on the algebras $sl(N,\mathbb C)$ and Calogero–Moser systems of $N$ particles. We construct classical Lax operators corresponding to these systems. We show that these operators are related to certain new trigonometric and rational solutions of the Yang–Baxter equations for the algebras $sl(N,\mathbb C)$ and give explicit formulas for $N=2,3$.
Keywords: integrable system, Euler–Arnold top, Yang–Baxter equation.
Received: 06.06.2008
English version:
Theoretical and Mathematical Physics, 2009, Volume 158, Issue 3, Pages 300–312
DOI: https://doi.org/10.1007/s11232-009-0024-4
Bibliographic databases:
Language: Russian
Citation: A. V. Smirnov, “Integrable $sl(N,\mathbb C)$ tops as Calogero–Moser systems”, TMF, 158:3 (2009), 355–369; Theoret. and Math. Phys., 158:3 (2009), 300–312
Citation in format AMSBIB
\Bibitem{Smi09}
\by A.~V.~Smirnov
\paper Integrable $sl(N,\mathbb C)$ tops as Calogero--Moser systems
\jour TMF
\yr 2009
\vol 158
\issue 3
\pages 355--369
\mathnet{http://mi.mathnet.ru/tmf6319}
\crossref{https://doi.org/10.4213/tmf6319}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2547446}
\zmath{https://zbmath.org/?q=an:1175.70006}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009TMP...158..300S}
\transl
\jour Theoret. and Math. Phys.
\yr 2009
\vol 158
\issue 3
\pages 300--312
\crossref{https://doi.org/10.1007/s11232-009-0024-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000264844000003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-63849220192}
Linking options:
  • https://www.mathnet.ru/eng/tmf6319
  • https://doi.org/10.4213/tmf6319
  • https://www.mathnet.ru/eng/tmf/v158/i3/p355
  • This publication is cited in the following 9 articles:
    1. A. M. Levin, M. A. Olshanetsky, A. V. Zotov, “Classification of isomonodromy problems on elliptic curves”, Russian Math. Surveys, 69:1 (2014), 35–118  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    2. Levin A. Olshanetsky M. Zotov A., “Planck Constant as Spectral Parameter in Integrable Systems and Kzb Equations”, J. High Energy Phys., 2014, no. 10, 109  crossref  mathscinet  zmath  isi  scopus  scopus
    3. Aminov G. Arthamonov S. Smirnov A. Zotov A., “Rational TOP and Its Classical R-Matrix”, J. Phys. A-Math. Theor., 47:30 (2014), 305207  crossref  mathscinet  zmath  isi  scopus  scopus
    4. G. Aminov, S. Arthamonov, “Degenerating the elliptic Schlesinger system”, Theoret. and Math. Phys., 174:1 (2013), 1–20  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  elib  elib
    5. A. V. Zotov, A. V. Smirnov, “Modifications of bundles, elliptic integrable systems, and related problems”, Theoret. and Math. Phys., 177:1 (2013), 1281–1338  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    6. G. Aminov, “Limit relation between Toda chains and the elliptic $SL(N,\mathbb C)$ top”, Theoret. and Math. Phys., 171:2 (2012), 575–588  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    7. Andrey M. Levin, Mikhail A. Olshanetsky, Andrey V. Smirnov, Andrei V. Zotov, “Hecke Transformations of Conformal Blocks in WZW Theory. I. KZB Equations for Non-Trivial Bundles”, SIGMA, 8 (2012), 095, 37 pp.  mathnet  crossref  mathscinet
    8. Aminov G., Arthamonov S., “Reduction of the elliptic SL(N, C) top”, Journal of Physics A-Mathematical and Theoretical, 44:7 (2011), 075201  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    9. Smirnov A., “Degenerate Sklyanin algebras”, Central European Journal of Physics, 8:4 (2010), 542–554  crossref  adsnasa  isi  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:549
    Full-text PDF :283
    References:81
    First page:6
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025