Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2009, Volume 158, Number 3, Pages 370–377
DOI: https://doi.org/10.4213/tmf6320
(Mi tmf6320)
 

This article is cited in 29 scientific papers (total in 29 papers)

Solutions of the three-dimensional sine-Gordon equation

E. L. Aero, A. N. Bulygin, Yu. V. Pavlov

Institute of Problems of Mechanical Engineering, Russian Academy of Sciences
References:
Abstract: We obtain exact solutions $U(x,y,z,t)$ of the three-dimensional sine-Gordon equation in a form that Lamb previously proposed for integrating the two-dimensional sine-Gordon equation. The three-dimensional solutions depend on arbitrary functions $F(\alpha)$ and $\Phi(\alpha,\beta)$, whose arguments are some functions $\alpha(x,y,z,t)$ and $\beta(x,y,z,t)$. The ansatzes must satisfy certain equations. These are an algebraic system of equations in the case of one ansatz. In the case of two ansatzes, the system of algebraic equations is supplemented by first-order ordinary differential equations. The resulting solutions $U(x,y,z,t)$ have an important property, namely, the superposition principle holds for the function $\operatorname{tan}(U/4)$. The suggested approach can be used to solve the generalized sine-Gordon equation, which, in contrast to the classical equation, additionally involves first-order partial derivatives with respect to the variables $x$, $y$, $z$, and $t$, and also to integrate the sinh-Gordon equation. This approach admits a natural generalization to the case of integration of the abovementioned types of equations in a space with any number of dimensions.
Keywords: sine-Gordon equation, wave equation, Hamilton–Jacobi equation, superposition principle.
Received: 23.05.2008
English version:
Theoretical and Mathematical Physics, 2009, Volume 158, Issue 3, Pages 313–319
DOI: https://doi.org/10.1007/s11232-009-0025-3
Bibliographic databases:
Language: Russian
Citation: E. L. Aero, A. N. Bulygin, Yu. V. Pavlov, “Solutions of the three-dimensional sine-Gordon equation”, TMF, 158:3 (2009), 370–377; Theoret. and Math. Phys., 158:3 (2009), 313–319
Citation in format AMSBIB
\Bibitem{AerBulPav09}
\by E.~L.~Aero, A.~N.~Bulygin, Yu.~V.~Pavlov
\paper Solutions of the~three-dimensional sine-Gordon equation
\jour TMF
\yr 2009
\vol 158
\issue 3
\pages 370--377
\mathnet{http://mi.mathnet.ru/tmf6320}
\crossref{https://doi.org/10.4213/tmf6320}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2547447}
\zmath{https://zbmath.org/?q=an:1181.35225}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009TMP...158..313A}
\transl
\jour Theoret. and Math. Phys.
\yr 2009
\vol 158
\issue 3
\pages 313--319
\crossref{https://doi.org/10.1007/s11232-009-0025-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000264844000004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-63849090031}
Linking options:
  • https://www.mathnet.ru/eng/tmf6320
  • https://doi.org/10.4213/tmf6320
  • https://www.mathnet.ru/eng/tmf/v158/i3/p370
  • This publication is cited in the following 29 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:961
    Full-text PDF :332
    References:94
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024