Abstract:
We generalize the Hamilton equations for dynamical processes with relaxation. We introduce a dissipative Poisson bracket in terms of the dissipation function. We obtain the universal structure of the relaxation terms in the equations for the dynamics of condensed media and verify this result for structureless liquids, elastic solids, and quantum liquids. In the examples of the condensed media under consideration, we obtain expressions for the dissipative Poisson brackets for the complete set of dynamical parameters.
Citation:
M. Yu. Kovalevsky, V. T. Matskevich, A. Ya. Razumnyi, “Universality of the relaxation structure of equations for the dynamics of continuous media and dissipative Poisson brackets”, TMF, 158:2 (2009), 277–291; Theoret. and Math. Phys., 158:2 (2009), 233–245
\Bibitem{KovMatRaz09}
\by M.~Yu.~Kovalevsky, V.~T.~Matskevich, A.~Ya.~Razumnyi
\paper Universality of the~relaxation structure of equations for the~dynamics of continuous media and dissipative Poisson brackets
\jour TMF
\yr 2009
\vol 158
\issue 2
\pages 277--291
\mathnet{http://mi.mathnet.ru/tmf6314}
\crossref{https://doi.org/10.4213/tmf6314}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2547405}
\zmath{https://zbmath.org/?q=an:1178.82088}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009TMP...158..233K}
\transl
\jour Theoret. and Math. Phys.
\yr 2009
\vol 158
\issue 2
\pages 233--245
\crossref{https://doi.org/10.1007/s11232-009-0019-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000264493900009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-62949177960}
Linking options:
https://www.mathnet.ru/eng/tmf6314
https://doi.org/10.4213/tmf6314
https://www.mathnet.ru/eng/tmf/v158/i2/p277
This publication is cited in the following 2 articles:
Kovalevsky M.Y., Kotelnikova O.A., “Symmetry, Phase States and Dynamics of Magnets With Spin S=1”, Problems of Atomic Science and Technology, 2012, no. 1, 316–320
M. Yu. Kovalevsky, “The $SU(3)$ symmetry and macroscopic dynamics of magnets with spin $s=1$”, Theoret. and Math. Phys., 168:2 (2011), 1064–1077