Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2009, Volume 158, Number 2, Pages 263–276
DOI: https://doi.org/10.4213/tmf6313
(Mi tmf6313)
 

This article is cited in 6 scientific papers (total in 6 papers)

The number of eigenvalues of the two-particle discrete Schrödinger operator

S. N. Lakaeva, A. M. Khalkhuzhaevb

a A. Navoi Samarkand State University
b Uzbekistan Academy of Sciences, Samarkand Branch
Full-text PDF (441 kB) Citations (6)
References:
Abstract: We consider the two-particle discrete Schrödinger operator associated with the Hamiltonian of a system of two particles (fermions) interacting only at the nearest neighbor sites. We find the number and the location of the eigenvalues of this operator depending on the particle interaction energy, the system quasimomentum, and the dimension of the lattice $\mathbb Z^\nu$, $\nu\ge1$.
Keywords: Hamiltonian, two-particle discrete Schrödinger operator, quasimomentum, essential spectrum, virtual level, eigenvalue, Fredholm determinant.
Received: 18.03.2008
Revised: 06.05.2008
English version:
Theoretical and Mathematical Physics, 2009, Volume 158, Issue 2, Pages 221–232
DOI: https://doi.org/10.1007/s11232-009-0018-2
Bibliographic databases:
Language: Russian
Citation: S. N. Lakaev, A. M. Khalkhuzhaev, “The number of eigenvalues of the two-particle discrete Schrödinger operator”, TMF, 158:2 (2009), 263–276; Theoret. and Math. Phys., 158:2 (2009), 221–232
Citation in format AMSBIB
\Bibitem{LakKha09}
\by S.~N.~Lakaev, A.~M.~Khalkhuzhaev
\paper The~number of eigenvalues of the~two-particle discrete Schr\"odinger
operator
\jour TMF
\yr 2009
\vol 158
\issue 2
\pages 263--276
\mathnet{http://mi.mathnet.ru/tmf6313}
\crossref{https://doi.org/10.4213/tmf6313}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2547404}
\zmath{https://zbmath.org/?q=an:1174.81004}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009TMP...158..221L}
\transl
\jour Theoret. and Math. Phys.
\yr 2009
\vol 158
\issue 2
\pages 221--232
\crossref{https://doi.org/10.1007/s11232-009-0018-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000264493900008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-62949098112}
Linking options:
  • https://www.mathnet.ru/eng/tmf6313
  • https://doi.org/10.4213/tmf6313
  • https://www.mathnet.ru/eng/tmf/v158/i2/p263
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:587
    Full-text PDF :259
    References:68
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024