Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2009, Volume 158, Number 1, Pages 115–125
DOI: https://doi.org/10.4213/tmf6302
(Mi tmf6302)
 

This article is cited in 2 scientific papers (total in 2 papers)

Quasilevels of a two-particle Schrödinger operator with a perturbed periodic potential

Yu. P. Chuburin

Physical-Technical Institute of the Ural Branch of the Russian Academy of Sciences
Full-text PDF (397 kB) Citations (2)
References:
Abstract: We consider a two-dimensional periodic Schrödinger operator perturbed by the interaction potential of two one-dimensional particles. We prove that quasilevels (i.e., eigenvalues or resonances) of the given operator exist for a fixed quasimomentum and a small perturbation near the band boundaries of the corresponding periodic operator. We study the asymptotic behavior of the quasilevels as the coupling constant goes to zero. We obtain a simple condition for a quasilevel to be an eigenvalue.
Keywords: two-particle Schrödinger operator, periodic potential, eigenvalue, resonance.
Received: 31.10.2007
Revised: 14.05.2008
English version:
Theoretical and Mathematical Physics, 2009, Volume 158, Issue 1, Pages 96–104
DOI: https://doi.org/10.1007/s11232-009-0007-5
Bibliographic databases:
Language: Russian
Citation: Yu. P. Chuburin, “Quasilevels of a two-particle Schrödinger operator with a perturbed periodic potential”, TMF, 158:1 (2009), 115–125; Theoret. and Math. Phys., 158:1 (2009), 96–104
Citation in format AMSBIB
\Bibitem{Chu09}
\by Yu.~P.~Chuburin
\paper Quasilevels of a~two-particle Schr\"odinger operator with a~perturbed periodic potential
\jour TMF
\yr 2009
\vol 158
\issue 1
\pages 115--125
\mathnet{http://mi.mathnet.ru/tmf6302}
\crossref{https://doi.org/10.4213/tmf6302}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2543543}
\zmath{https://zbmath.org/?q=an:1175.81087}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009TMP...158...96C}
\transl
\jour Theoret. and Math. Phys.
\yr 2009
\vol 158
\issue 1
\pages 96--104
\crossref{https://doi.org/10.1007/s11232-009-0007-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000263099300007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-59549084578}
Linking options:
  • https://www.mathnet.ru/eng/tmf6302
  • https://doi.org/10.4213/tmf6302
  • https://www.mathnet.ru/eng/tmf/v158/i1/p115
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:527
    Full-text PDF :212
    References:93
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024