Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2009, Volume 158, Number 1, Pages 98–114
DOI: https://doi.org/10.4213/tmf6301
(Mi tmf6301)
 

This article is cited in 3 scientific papers (total in 3 papers)

Geometric torsions and invariants of manifolds with a triangulated boundary

I. G. Korepanov

South Ural State University
Full-text PDF (569 kB) Citations (3)
References:
Abstract: Geometric torsions are torsions of acyclic complexes of vector spaces consisting of differentials of geometric quantities assigned to the elements of a manifold triangulation. We use geometric torsions to construct invariants for a three-dimensional manifold with a triangulated boundary. These invariants can be naturally combined into a vector, and a change of the boundary triangulation corresponds to a linear transformation of this vector. Moreover, when two manifolds are glued at their common boundary, these vectors undergo scalar multiplication, i.e., they satisfy Atiyah's axioms of a topological quantum field theory.
Keywords: topological quantum field theory, Atiyah's axioms, geometric acyclic complex.
Received: 21.02.2008
English version:
Theoretical and Mathematical Physics, 2009, Volume 158, Issue 1, Pages 82–95
DOI: https://doi.org/10.1007/s11232-009-0006-6
Bibliographic databases:
Language: Russian
Citation: I. G. Korepanov, “Geometric torsions and invariants of manifolds with a triangulated boundary”, TMF, 158:1 (2009), 98–114; Theoret. and Math. Phys., 158:1 (2009), 82–95
Citation in format AMSBIB
\Bibitem{Kor09}
\by I.~G.~Korepanov
\paper Geometric torsions and invariants of manifolds with a~triangulated boundary
\jour TMF
\yr 2009
\vol 158
\issue 1
\pages 98--114
\mathnet{http://mi.mathnet.ru/tmf6301}
\crossref{https://doi.org/10.4213/tmf6301}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2543542}
\zmath{https://zbmath.org/?q=an:1173.81019}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009TMP...158...82K}
\transl
\jour Theoret. and Math. Phys.
\yr 2009
\vol 158
\issue 1
\pages 82--95
\crossref{https://doi.org/10.1007/s11232-009-0006-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000263099300006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-59549089591}
Linking options:
  • https://www.mathnet.ru/eng/tmf6301
  • https://doi.org/10.4213/tmf6301
  • https://www.mathnet.ru/eng/tmf/v158/i1/p98
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:456
    Full-text PDF :194
    References:73
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024