Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2009, Volume 158, Number 1, Pages 49–57
DOI: https://doi.org/10.4213/tmf6298
(Mi tmf6298)
 

This article is cited in 3 scientific papers (total in 3 papers)

Approximation of a point perturbation on a Riemannian manifold

V. A. Geiler, D. A. Ivanova, I. Yu. Popovb

a Mordovian State University
b St. Petersburg State University of Information Technologies, Mechanics and Optics
Full-text PDF (384 kB) Citations (3)
References:
Abstract: We show that the Hamiltonian of point interaction on a Riemannian manifold with bounded geometry can be obtained as a limit (in the sense of uniform resolvent convergence) of a sequence of scaling Hamiltonians with short-range interaction.
Keywords: Riemannian manifold, point interaction, approximation.
Received: 13.12.2007
Revised: 22.03.2008
English version:
Theoretical and Mathematical Physics, 2009, Volume 158, Issue 1, Pages 40–47
DOI: https://doi.org/10.1007/s11232-009-0003-9
Bibliographic databases:
Language: Russian
Citation: V. A. Geiler, D. A. Ivanov, I. Yu. Popov, “Approximation of a point perturbation on a Riemannian manifold”, TMF, 158:1 (2009), 49–57; Theoret. and Math. Phys., 158:1 (2009), 40–47
Citation in format AMSBIB
\Bibitem{GeiIvaPop09}
\by V.~A.~Geiler, D.~A.~Ivanov, I.~Yu.~Popov
\paper Approximation of a~point perturbation on a~Riemannian manifold
\jour TMF
\yr 2009
\vol 158
\issue 1
\pages 49--57
\mathnet{http://mi.mathnet.ru/tmf6298}
\crossref{https://doi.org/10.4213/tmf6298}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2543539}
\zmath{https://zbmath.org/?q=an:1176.81052}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009TMP...158...40G}
\elib{https://elibrary.ru/item.asp?id=13609021}
\transl
\jour Theoret. and Math. Phys.
\yr 2009
\vol 158
\issue 1
\pages 40--47
\crossref{https://doi.org/10.1007/s11232-009-0003-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000263099300003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-59549090338}
Linking options:
  • https://www.mathnet.ru/eng/tmf6298
  • https://doi.org/10.4213/tmf6298
  • https://www.mathnet.ru/eng/tmf/v158/i1/p49
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:561
    Full-text PDF :223
    References:81
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024