Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2009, Volume 158, Number 1, Pages 23–48
DOI: https://doi.org/10.4213/tmf6297
(Mi tmf6297)
 

This article is cited in 2 scientific papers (total in 2 papers)

Fermionic approach for evaluating integrals of rational symmetric functions

J. Harnadab, A. Yu. Orlovc

a Université de Montréal, Centre de Recherches Mathématiques
b Concordia University, Department of Mathematics and Statistics
c P. P. Shirshov institute of Oceanology of RAS
Full-text PDF (610 kB) Citations (2)
References:
Abstract: We use the fermionic construction of two-matrix model partition functions to evaluate integrals over rational symmetric functions. This approach is complementary to the one used in our previous paper, where these integrals were evaluated by a direct method. Using Wick's theorem, we obtain the same determinantal expressions in terms of biorthogonal polynomials.
Keywords: random matrix, two-matrix model, multiple integral, factorization, dressing method, characteristic polynomial, free fermion.
Received: 06.12.2007
English version:
Theoretical and Mathematical Physics, 2009, Volume 158, Issue 1, Pages 17–39
DOI: https://doi.org/10.1007/s11232-009-0002-x
Bibliographic databases:
Language: Russian
Citation: J. Harnad, A. Yu. Orlov, “Fermionic approach for evaluating integrals of rational symmetric functions”, TMF, 158:1 (2009), 23–48; Theoret. and Math. Phys., 158:1 (2009), 17–39
Citation in format AMSBIB
\Bibitem{HarOrl09}
\by J.~Harnad, A.~Yu.~Orlov
\paper Fermionic approach for evaluating integrals of rational symmetric functions
\jour TMF
\yr 2009
\vol 158
\issue 1
\pages 23--48
\mathnet{http://mi.mathnet.ru/tmf6297}
\crossref{https://doi.org/10.4213/tmf6297}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2543538}
\zmath{https://zbmath.org/?q=an:1173.81015}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009TMP...158...17H}
\transl
\jour Theoret. and Math. Phys.
\yr 2009
\vol 158
\issue 1
\pages 17--39
\crossref{https://doi.org/10.1007/s11232-009-0002-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000263099300002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-59549102631}
Linking options:
  • https://www.mathnet.ru/eng/tmf6297
  • https://doi.org/10.4213/tmf6297
  • https://www.mathnet.ru/eng/tmf/v158/i1/p23
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024