Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2008, Volume 157, Number 1, Pages 116–129
DOI: https://doi.org/10.4213/tmf6267
(Mi tmf6267)
 

This article is cited in 3 scientific papers (total in 3 papers)

The Pauli principle, stability, and bound states in systems of identical pseudorelativistic particles

G. M. Zhislin

Scientific Research Institute of Radio Physics
Full-text PDF (504 kB) Citations (3)
References:
Abstract: Based on analyzing the properties of the Hamiltonian of a pseudorelativistic system $Z_n$ of $n$ identical particles, we establish that for actual (short-range) interaction potentials, there exists an infinite sequence of integers $n_s$, $s=1,2,\dots$, such that the system $Z_{n_s}$ is stable and that $\sup_sn_{s+1}n_s^{-1}<+\infty$. For a stable system $Z_n$, we show that the Hamiltonian of relative motion of such a system has a nonempty discrete spectrum for certain fixed values of the total particle momentum. We obtain these results taking the permutation symmetry (Pauli exclusion principle) fully into account for both fermion and boson systems for any value of the particle spin. Similar results previously proved for pseudorelativistic systems did not take permutation symmetry into account and hence had no physical meaning. For nonrelativistic systems, these results (except the estimate for $n_{s+1}n_s^{-1}$) were obtained taking permutation symmetry into account but under certain assumptions whose validity for actual systems has not yet been established. Our main theorem also holds for nonrelativistic systems, which is a substantial improvement of the existing result.
Keywords: pseudorelativistic system, stability, Pauli principle, discrete spectrum, many-particle Hamiltonian.
Received: 28.12.2007
English version:
Theoretical and Mathematical Physics, 2008, Volume 157, Issue 1, Pages 1461–1473
DOI: https://doi.org/10.1007/s11232-008-0120-x
Bibliographic databases:
Language: Russian
Citation: G. M. Zhislin, “The Pauli principle, stability, and bound states in systems of identical pseudorelativistic particles”, TMF, 157:1 (2008), 116–129; Theoret. and Math. Phys., 157:1 (2008), 1461–1473
Citation in format AMSBIB
\Bibitem{Zhi08}
\by G.~M.~Zhislin
\paper The~Pauli principle, stability, and bound states in systems of
identical pseudorelativistic particles
\jour TMF
\yr 2008
\vol 157
\issue 1
\pages 116--129
\mathnet{http://mi.mathnet.ru/tmf6267}
\crossref{https://doi.org/10.4213/tmf6267}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2488205}
\zmath{https://zbmath.org/?q=an:1155.81344}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008TMP...157.1461Z}
\transl
\jour Theoret. and Math. Phys.
\yr 2008
\vol 157
\issue 1
\pages 1461--1473
\crossref{https://doi.org/10.1007/s11232-008-0120-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000260620100008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-55349108514}
Linking options:
  • https://www.mathnet.ru/eng/tmf6267
  • https://doi.org/10.4213/tmf6267
  • https://www.mathnet.ru/eng/tmf/v157/i1/p116
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:483
    Full-text PDF :254
    References:78
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024