Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2008, Volume 157, Number 1, Pages 99–115
DOI: https://doi.org/10.4213/tmf6266
(Mi tmf6266)
 

This article is cited in 28 scientific papers (total in 28 papers)

EPR–Bohm experiment and Bell's inequality: Quantum physics meets probability theory

A. Yu. Khrennikov

Växjö University
References:
Abstract: Our main aim in this paper is to inform the physics community (and especially experts in quantum information) about investigations of the problem of the probabilistic compatibility of a family of random variables: the possibility of realizing such a family based on a single probability measure (of constructing a single Kolmogorov probability space). These investigations were started a hundred years ago by Boole. The complete solution of the problem was obtained by the Soviet mathematician Vorobiev in the 1960s. It turns out that probabilists and statisticians obtained inequalities for probabilities and correlations that include the famous Bell's inequality and its generalizations.
Keywords: Bell's inequality, nonlocality, “death of reality”, probabilistic incompatibility of random variables, Boole's necessary condition, Vorobiev theorem, contextual description of the EPR–Bohm experiment.
Received: 07.09.2007
Revised: 09.11.2007
English version:
Theoretical and Mathematical Physics, 2008, Volume 157, Issue 1, Pages 1448–1460
DOI: https://doi.org/10.1007/s11232-008-0119-3
Bibliographic databases:
Language: Russian
Citation: A. Yu. Khrennikov, “EPR–Bohm experiment and Bell's inequality: Quantum physics meets probability theory”, TMF, 157:1 (2008), 99–115; Theoret. and Math. Phys., 157:1 (2008), 1448–1460
Citation in format AMSBIB
\Bibitem{Khr08}
\by A.~Yu.~Khrennikov
\paper EPR--Bohm experiment and Bell's inequality: Quantum physics meets
probability theory
\jour TMF
\yr 2008
\vol 157
\issue 1
\pages 99--115
\mathnet{http://mi.mathnet.ru/tmf6266}
\crossref{https://doi.org/10.4213/tmf6266}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2488204}
\zmath{https://zbmath.org/?q=an:1155.81313}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008TMP...157.1448K}
\transl
\jour Theoret. and Math. Phys.
\yr 2008
\vol 157
\issue 1
\pages 1448--1460
\crossref{https://doi.org/10.1007/s11232-008-0119-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000260620100007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-55349119215}
Linking options:
  • https://www.mathnet.ru/eng/tmf6266
  • https://doi.org/10.4213/tmf6266
  • https://www.mathnet.ru/eng/tmf/v157/i1/p99
  • This publication is cited in the following 28 articles:
    1. Taras Aleksandrovich Varkhotov, Mikhail Yurevich Voloshin, “Taksonomiya nematerialnogo eksperimenta”, ΠΡΑΞΗMΑ. Journal of Visual Semiotics, 2025, no. 1(43), 138  crossref
    2. A V Belinsky, I I Dzhadan, “Bell inequality violation in relativity theory”, Laser Phys. Lett., 21:8 (2024), 085202  crossref
    3. Adam Forrest Kay, Boston Studies in the Philosophy and History of Science, 344, Advances in Pilot Wave Theory, 2024, 257  crossref
    4. Sajida Kousar, Sidra Arshad, Nasreen Kausar, Tzung-Pei Hong, “Construction of Nilpotent and Solvable Lie Algebra in Picture Fuzzy Environment”, Int J Comput Intell Syst, 16:1 (2023)  crossref
    5. “Linking Probability Theory and Quantum Mechanics, and a Novel Formulation of Quantization”, 2023  crossref
    6. Giovanni Manfredi, Giovanni Manfredi, “Logical entropy and negative probabilities in quantum mechanics”, 4open, 5 (2022), 8  crossref
    7. A. V. Belinsky, “Wigner's friend paradox: does objective reality not exist?”, Phys. Usp., 63:12 (2020), 1256–1263  mathnet  crossref  crossref  adsnasa  isi  elib
    8. Nanasiova O., Cernanova V., Valaskova L., “Probability Measures and Projections on Quantum Logics”, Information Technology, Systems Research, and Computational Physics, Advances in Intelligent Systems and Computing, 945, eds. Kulczycki P., Kacprzyk J., Koczy L., Mesiar R., Wisniewski R., Springer International Publishing Ag, 2020, 321–330  crossref  isi
    9. Baladron C., Khrennikov A., “Bell Inequality Violation in the Framework of a Darwinian Approach to Quantum Mechanics”, Eur. Phys. J.-Spec. Top., 227:15-16 (2019), 2119–2132  crossref  isi  scopus
    10. Dzhafarov E.N., Kujala J.V., “Probabilistic Foundations of Contextuality”, Fortschritte Phys.-Prog. Phys., 65:6-8, SI (2017), 1600040  crossref  mathscinet  zmath  isi  scopus  scopus
    11. Alexander V. Belinsky, Michael H. Shulman, “A Possible Origin of Quantum Correlations”, J Russ Laser Res, 38:3 (2017), 230  crossref
    12. Loubenets E.R., “On the existence of a local quasi hidden variable (LqHV) model for each N -qudit state and the maximal quantum violation of Bell inequalities”, Int. J. Quantum Inf., 14:4, SI (2016), 1640010  crossref  mathscinet  zmath  isi  elib  scopus
    13. Khrennikov A., “Bell Could Become the Copernicus of Probability”, Open Syst. Inf. Dyn., 23:2 (2016), 1650008  crossref  mathscinet  zmath  isi  elib  scopus
    14. Dzhafarov E.N., Kujala J.V., “Contextuality Is About Identity of Random Variables”, Phys. Scr., T163 (2014), 014009  crossref  mathscinet  adsnasa  isi  scopus  scopus
    15. Dzhafarov E.N., Kujala J.V., “No-Forcing and No-Matching Theorems For Classical Probability Applied To Quantum Mechanics”, Found. Phys., 44:3 (2014), 248–265  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    16. Dzhafarov E.N., Kujala J.V., “A Qualified Kolmogorovian Account of Probabilistic Contextuality”, Quantum Interaction, Qi 2013, Lecture Notes in Computer Science, 8369, eds. Atmanspacher H., Haven E., Kitto K., Raine D., Springer-Verlag Berlin, 2014, 201–212  crossref  mathscinet  isi  scopus  scopus
    17. Beyond Quantum, 2014, 303  crossref
    18. Dzhafarov E.N., Kujala J.V., “All-Possible-Couplings Approach to Measuring Probabilistic Context”, PLoS One, 8:5 (2013), e61712  crossref  adsnasa  isi  scopus  scopus
    19. Dzhafarov E.N., Kujala J.V., “Order-Distance and Other Metric-Like Functions on Jointly Distributed Random Variables”, Proc. Amer. Math. Soc., 141:9 (2013), 3291–3301  crossref  mathscinet  zmath  isi  scopus  scopus
    20. Hess K., De Raedt H., Michielsen K., “Hidden Assumptions in the Derivation of the Theorem of Bell”, Phys. Scr., T151 (2012), 014002  crossref  adsnasa  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:1802
    Full-text PDF :884
    References:162
    First page:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025