Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2000, Volume 124, Number 1, Pages 18–35
DOI: https://doi.org/10.4213/tmf623
(Mi tmf623)
 

This article is cited in 3 scientific papers (total in 3 papers)

Ginzburg–Landau vortex analogues

A. V. Domrin

M. V. Lomonosov Moscow State University
Full-text PDF (296 kB) Citations (3)
References:
Abstract: We consider a static one-dimensional Ginzburg–Landau equation (on a line segment or a circle) involving a large parameter λ. We show that as λ, there exist solutions whose asymptotic behavior resembles the behavior of the two-dimensional vortex solutions.
Received: 08.10.1999
English version:
Theoretical and Mathematical Physics, 2000, Volume 124, Issue 1, Pages 872–886
DOI: https://doi.org/10.1007/BF02551064
Bibliographic databases:
Language: Russian
Citation: A. V. Domrin, “Ginzburg–Landau vortex analogues”, TMF, 124:1 (2000), 18–35; Theoret. and Math. Phys., 124:1 (2000), 872–886
Citation in format AMSBIB
\Bibitem{Dom00}
\by A.~V.~Domrin
\paper Ginzburg--Landau vortex analogues
\jour TMF
\yr 2000
\vol 124
\issue 1
\pages 18--35
\mathnet{http://mi.mathnet.ru/tmf623}
\crossref{https://doi.org/10.4213/tmf623}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1821310}
\zmath{https://zbmath.org/?q=an:0996.35072}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 124
\issue 1
\pages 872--886
\crossref{https://doi.org/10.1007/BF02551064}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000089449800002}
Linking options:
  • https://www.mathnet.ru/eng/tmf623
  • https://doi.org/10.4213/tmf623
  • https://www.mathnet.ru/eng/tmf/v124/i1/p18
  • This publication is cited in the following 3 articles:
    1. Armen Sergeev, “SCATTERING OF GINZBURG–LANDAU VORTICES”, J Math Sci, 266:3 (2022), 476  crossref
    2. A. G. Sergeev, “Adiabatic limit in the Ginzburg–Landau and Seiberg–Witten equations”, Proc. Steklov Inst. Math., 289 (2015), 227–285  mathnet  crossref  crossref  isi  elib
    3. A. G. Sergeev, “On two geometric problems arising in mathematical physics”, J. Math. Sci., 223:6 (2017), 756–762  mathnet  crossref  mathscinet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:576
    Full-text PDF :266
    References:96
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025