Abstract:
The absolute continuity of the spectrum for the periodic Dirac operator $$ \widehat D=\sum_{j=1}^n\biggl(-i\frac{\partial}{{\partial}x_j}-A_j\biggr) \widehat\alpha_j+\widehat V^{(0)}+\widehat V^{(1)},\quad x\in\mathbb R^n,\quad n\geq3, $$ is proved given that $A\in C(\mathbb R^n;\mathbb R^n)\cap H_\mathrm{loc}^q(\mathbb R^n;\mathbb R^n)$, $2q>n-2$, and also that the Fourier series of the vector potential $A\colon\mathbb R^n\to\mathbb R^n$ is absolutely convergent. Here, $\widehat V^{(s)}=(\widehat V^{(s)})^*$ are continuous matrix functions and $\widehat V^{(s)}\widehat\alpha_j=(-1)^s\widehat\alpha_j\widehat V^{(s)}$ for all anticommuting Hermitian matrices $\widehat\alpha_j$, $\widehat\alpha_j^2=\hat I$, $s=0,1$.
This publication is cited in the following 17 articles:
L. I. Danilov, “Absolute Continuity of the Spectrum of a Periodic 3D Magnetic Schrödinger Operator with Singular Electric Potential”, Math. Notes, 110:4 (2021), 497–510
L. I. Danilov, “O spektre mnogomernogo periodicheskogo magnitnogo operatora Shredingera s singulyarnym elektricheskim potentsialom”, Izv. IMI UdGU, 58 (2021), 18–47
L. I. Danilov, “O spektre periodicheskogo magnitnogo operatora Diraka”, Izv. IMI UdGU, 2016, no. 2(48), 3–21
L. I. Danilov, “O spektre periodicheskogo operatora Shredingera s potentsialom iz prostranstva Morri”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2012, no. 3, 25–47
Danilov L.I., “On Absolute Continuity of the Spectrum of a 3D Periodic Magnetic Dirac Operator”, Integral Equations Operator Theory, 71:4 (2011), 535–556
Danilov L.I., “On absolute continuity of the spectrum of three- and four-dimensional periodic Schrodinger operators”, J. Phys. A: Math. Theor., 43:21 (2010), 215201
Danilov, LI, “On absolute continuity of the spectrum of a periodic magnetic Schrodinger operator”, Journal of Physics A-Mathematical and Theoretical, 42:27 (2009), 275204
Shen, ZW, “Uniform Sobolev inequalities and absolute continuity of periodic operators”, Transactions of the American Mathematical Society, 360:4 (2008), 1741
L. I. Danilov, “Ob absolyutnoi nepreryvnosti spektra trekhmernogo periodicheskogo operatora Diraka”, Izv. IMI UdGU, 2006, no. 1(35), 49–76
L. I. Danilov, “The absence of eigenvalues in the spectrum of ageneralized two-dimensional periodic Dirac operator”, St. Petersburg Math. J., 17:3 (2006), 409–433
L. I. Danilov, “Absolute Continuity of the Spectrum of a Periodic Schrödinger Operator”, Math. Notes, 73:1 (2003), 46–57
L. I. Danilov, “The Spectrum of the Two-Dimensional Periodic Schrödinger Operator”, Theoret. and Math. Phys., 134:3 (2003), 392–403
L. I. Danilov, “O spektre dvumernykh periodicheskikh operatorov Shredingera i Diraka”, Izv. IMI UdGU, 2002, no. 3(26), 3–98
V. M. Zhuravlev, “Autowaves in double-wire lines with the exponential-type nonlinear active element”, JETP Letters, 75:1 (2002), 9–14
Kuchment, P, “On the structure of spectra of periodic elliptic operators”, Transactions of the American Mathematical Society, 354:2 (2001), 537