Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2000, Volume 124, Number 1, Pages 3–17
DOI: https://doi.org/10.4213/tmf622
(Mi tmf622)
 

This article is cited in 17 scientific papers (total in 17 papers)

Spectrum of the periodic Dirac operator

L. I. Danilov

Physical-Technical Institute of the Ural Branch of the Russian Academy of Sciences
References:
Abstract: The absolute continuity of the spectrum for the periodic Dirac operator
$$ \widehat D=\sum_{j=1}^n\biggl(-i\frac{\partial}{{\partial}x_j}-A_j\biggr) \widehat\alpha_j+\widehat V^{(0)}+\widehat V^{(1)},\quad x\in\mathbb R^n,\quad n\geq3, $$
is proved given that $A\in C(\mathbb R^n;\mathbb R^n)\cap H_\mathrm{loc}^q(\mathbb R^n;\mathbb R^n)$, $2q>n-2$, and also that the Fourier series of the vector potential $A\colon\mathbb R^n\to\mathbb R^n$ is absolutely convergent. Here, $\widehat V^{(s)}=(\widehat V^{(s)})^*$ are continuous matrix functions and $\widehat V^{(s)}\widehat\alpha_j=(-1)^s\widehat\alpha_j\widehat V^{(s)}$ for all anticommuting Hermitian matrices $\widehat\alpha_j$, $\widehat\alpha_j^2=\hat I$, $s=0,1$.
Received: 29.06.1999
Revised: 27.10.1999
English version:
Theoretical and Mathematical Physics, 2000, Volume 124, Issue 1, Pages 859–871
DOI: https://doi.org/10.1007/BF02551063
Bibliographic databases:
Language: Russian
Citation: L. I. Danilov, “Spectrum of the periodic Dirac operator”, TMF, 124:1 (2000), 3–17; Theoret. and Math. Phys., 124:1 (2000), 859–871
Citation in format AMSBIB
\Bibitem{Dan00}
\by L.~I.~Danilov
\paper Spectrum of the periodic Dirac operator
\jour TMF
\yr 2000
\vol 124
\issue 1
\pages 3--17
\mathnet{http://mi.mathnet.ru/tmf622}
\crossref{https://doi.org/10.4213/tmf622}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1821309}
\zmath{https://zbmath.org/?q=an:1031.81023}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 124
\issue 1
\pages 859--871
\crossref{https://doi.org/10.1007/BF02551063}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000089449800001}
Linking options:
  • https://www.mathnet.ru/eng/tmf622
  • https://doi.org/10.4213/tmf622
  • https://www.mathnet.ru/eng/tmf/v124/i1/p3
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:459
    Full-text PDF :213
    References:70
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024