|
This article is cited in 17 scientific papers (total in 17 papers)
Spectrum of the periodic Dirac operator
L. I. Danilov Physical-Technical Institute of the Ural Branch of the Russian Academy of Sciences
Abstract:
The absolute continuity of the spectrum for the periodic Dirac operator $$ \widehat D=\sum_{j=1}^n\biggl(-i\frac{\partial}{{\partial}x_j}-A_j\biggr) \widehat\alpha_j+\widehat V^{(0)}+\widehat V^{(1)},\quad x\in\mathbb R^n,\quad n\geq3, $$ is proved given that $A\in C(\mathbb R^n;\mathbb R^n)\cap H_\mathrm{loc}^q(\mathbb R^n;\mathbb R^n)$, $2q>n-2$, and also that the Fourier series of the vector potential $A\colon\mathbb R^n\to\mathbb R^n$ is absolutely convergent. Here, $\widehat V^{(s)}=(\widehat V^{(s)})^*$ are continuous matrix functions and $\widehat V^{(s)}\widehat\alpha_j=(-1)^s\widehat\alpha_j\widehat V^{(s)}$ for all anticommuting Hermitian matrices $\widehat\alpha_j$, $\widehat\alpha_j^2=\hat I$, $s=0,1$.
Received: 29.06.1999 Revised: 27.10.1999
Citation:
L. I. Danilov, “Spectrum of the periodic Dirac operator”, TMF, 124:1 (2000), 3–17; Theoret. and Math. Phys., 124:1 (2000), 859–871
Linking options:
https://www.mathnet.ru/eng/tmf622https://doi.org/10.4213/tmf622 https://www.mathnet.ru/eng/tmf/v124/i1/p3
|
Statistics & downloads: |
Abstract page: | 459 | Full-text PDF : | 213 | References: | 70 | First page: | 1 |
|