Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2000, Volume 124, Number 1, Pages 3–17
DOI: https://doi.org/10.4213/tmf622
(Mi tmf622)
 

This article is cited in 17 scientific papers (total in 17 papers)

Spectrum of the periodic Dirac operator

L. I. Danilov

Physical-Technical Institute of the Ural Branch of the Russian Academy of Sciences
References:
Abstract: The absolute continuity of the spectrum for the periodic Dirac operator
$$ \widehat D=\sum_{j=1}^n\biggl(-i\frac{\partial}{{\partial}x_j}-A_j\biggr) \widehat\alpha_j+\widehat V^{(0)}+\widehat V^{(1)},\quad x\in\mathbb R^n,\quad n\geq3, $$
is proved given that $A\in C(\mathbb R^n;\mathbb R^n)\cap H_\mathrm{loc}^q(\mathbb R^n;\mathbb R^n)$, $2q>n-2$, and also that the Fourier series of the vector potential $A\colon\mathbb R^n\to\mathbb R^n$ is absolutely convergent. Here, $\widehat V^{(s)}=(\widehat V^{(s)})^*$ are continuous matrix functions and $\widehat V^{(s)}\widehat\alpha_j=(-1)^s\widehat\alpha_j\widehat V^{(s)}$ for all anticommuting Hermitian matrices $\widehat\alpha_j$, $\widehat\alpha_j^2=\hat I$, $s=0,1$.
Received: 29.06.1999
Revised: 27.10.1999
English version:
Theoretical and Mathematical Physics, 2000, Volume 124, Issue 1, Pages 859–871
DOI: https://doi.org/10.1007/BF02551063
Bibliographic databases:
Language: Russian
Citation: L. I. Danilov, “Spectrum of the periodic Dirac operator”, TMF, 124:1 (2000), 3–17; Theoret. and Math. Phys., 124:1 (2000), 859–871
Citation in format AMSBIB
\Bibitem{Dan00}
\by L.~I.~Danilov
\paper Spectrum of the periodic Dirac operator
\jour TMF
\yr 2000
\vol 124
\issue 1
\pages 3--17
\mathnet{http://mi.mathnet.ru/tmf622}
\crossref{https://doi.org/10.4213/tmf622}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1821309}
\zmath{https://zbmath.org/?q=an:1031.81023}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 124
\issue 1
\pages 859--871
\crossref{https://doi.org/10.1007/BF02551063}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000089449800001}
Linking options:
  • https://www.mathnet.ru/eng/tmf622
  • https://doi.org/10.4213/tmf622
  • https://www.mathnet.ru/eng/tmf/v124/i1/p3
  • This publication is cited in the following 17 articles:
    1. L. I. Danilov, “Absolute Continuity of the Spectrum of a Periodic 3D Magnetic Schrödinger Operator with Singular Electric Potential”, Math. Notes, 110:4 (2021), 497–510  mathnet  crossref  crossref  isi  elib
    2. L. I. Danilov, “O spektre mnogomernogo periodicheskogo magnitnogo operatora Shredingera s singulyarnym elektricheskim potentsialom”, Izv. IMI UdGU, 58 (2021), 18–47  mathnet  crossref
    3. L. I. Danilov, “O spektre periodicheskogo magnitnogo operatora Diraka”, Izv. IMI UdGU, 2016, no. 2(48), 3–21  mathnet  elib
    4. Kuchment P., “An overview of periodic elliptic operators”, Bull. Amer. Math. Soc., 53:3 (2016), 343–414  crossref  mathscinet  zmath  isi  elib  scopus
    5. L. I. Danilov, “O spektre periodicheskogo operatora Shredingera s potentsialom iz prostranstva Morri”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2012, no. 3, 25–47  mathnet
    6. Danilov L.I., “On Absolute Continuity of the Spectrum of a 3D Periodic Magnetic Dirac Operator”, Integral Equations Operator Theory, 71:4 (2011), 535–556  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    7. Danilov L.I., “On absolute continuity of the spectrum of three- and four-dimensional periodic Schrodinger operators”, J. Phys. A: Math. Theor., 43:21 (2010), 215201  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    8. Danilov, LI, “On absolute continuity of the spectrum of a periodic magnetic Schrodinger operator”, Journal of Physics A-Mathematical and Theoretical, 42:27 (2009), 275204  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    9. Shen, ZW, “Uniform Sobolev inequalities and absolute continuity of periodic operators”, Transactions of the American Mathematical Society, 360:4 (2008), 1741  crossref  mathscinet  zmath  isi  scopus  scopus
    10. L. I. Danilov, “Absolyutnaya nepreryvnost spektra mnogomernogo periodicheskogo magnitnogo operatora Diraka”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2008, no. 1, 61–96  mathnet
    11. L. I. Danilov, “Ob absolyutnoi nepreryvnosti spektra trekhmernogo periodicheskogo operatora Diraka”, Izv. IMI UdGU, 2006, no. 1(35), 49–76  mathnet
    12. L. I. Danilov, “The absence of eigenvalues in the spectrum of ageneralized two-dimensional periodic Dirac operator”, St. Petersburg Math. J., 17:3 (2006), 409–433  mathnet  crossref  mathscinet  zmath
    13. L. I. Danilov, “Absolute Continuity of the Spectrum of a Periodic Schrödinger Operator”, Math. Notes, 73:1 (2003), 46–57  mathnet  crossref  crossref  mathscinet  zmath  isi
    14. L. I. Danilov, “The Spectrum of the Two-Dimensional Periodic Schrödinger Operator”, Theoret. and Math. Phys., 134:3 (2003), 392–403  mathnet  crossref  crossref  mathscinet  zmath  isi
    15. L. I. Danilov, “O spektre dvumernykh periodicheskikh operatorov Shredingera i Diraka”, Izv. IMI UdGU, 2002, no. 3(26), 3–98  mathnet
    16. V. M. Zhuravlev, “Autowaves in double-wire lines with the exponential-type nonlinear active element”, JETP Letters, 75:1 (2002), 9–14  mathnet  crossref
    17. Kuchment, P, “On the structure of spectra of periodic elliptic operators”, Transactions of the American Mathematical Society, 354:2 (2001), 537  crossref  mathscinet  isi  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:501
    Full-text PDF :231
    References:79
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025