Abstract:
We consider a system of three quantum particles interacting by pairwise
short-range attraction potentials on a three-dimensional lattice (one of
the particles has an infinite mass). We prove that the number of bound
states of the corresponding Schrödinger operator is finite in the case
where the potentials satisfy certain conditions, the two two-particle
sub-Hamiltonians with infinite mass have a resonance at zero, and zero is
a regular point for the two-particle sub-Hamiltonian with finite mass.
Citation:
M. I. Muminov, “Finiteness of the discrete spectrum of the Schrödinger operator of
three particles on a lattice”, TMF, 154:2 (2008), 363–371; Theoret. and Math. Phys., 154:2 (2008), 311–318
\Bibitem{Mum08}
\by M.~I.~Muminov
\paper Finiteness of the~discrete spectrum of the~Schr\"odinger operator of
three particles on a~lattice
\jour TMF
\yr 2008
\vol 154
\issue 2
\pages 363--371
\mathnet{http://mi.mathnet.ru/tmf6175}
\crossref{https://doi.org/10.4213/tmf6175}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2424014}
\zmath{https://zbmath.org/?q=an:1150.81005}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008TMP...154..311M}
\elib{https://elibrary.ru/item.asp?id=10438480}
\transl
\jour Theoret. and Math. Phys.
\yr 2008
\vol 154
\issue 2
\pages 311--318
\crossref{https://doi.org/10.1007/s11232-008-0029-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000253216500013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-39349110537}
Linking options:
https://www.mathnet.ru/eng/tmf6175
https://doi.org/10.4213/tmf6175
https://www.mathnet.ru/eng/tmf/v154/i2/p363
This publication is cited in the following 2 articles:
M. E. Muminov, E. M. Shermatova, “On finiteness of discrete spectrum of three-particle Schrödinger operator on a lattice”, Russian Math. (Iz. VUZ), 60:1 (2016), 22–29
Rasulov T.H., “on the Finiteness of the Discrete Spectrum of a 3 X 3 Operator Matrix”, Methods Funct. Anal. Topol., 22:1 (2016), 48–61