Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2008, Volume 154, Number 2, Pages 354–362
DOI: https://doi.org/10.4213/tmf6174
(Mi tmf6174)
 

This article is cited in 5 scientific papers (total in 5 papers)

Two-loop calculations of the matrix σ-model effective action in the background field formalism

A. A. Bagaev

Saint-Petersburg State University
Full-text PDF (439 kB) Citations (5)
References:
Abstract: We consider the matrix σ-model in the background field formalism. In the two-loop approximation, we demonstrate the equality of “running coupling constants” in the momentum cutoff regularization and in the dimensional regularization by direct calculation. We verify that the β-function coincides with the previously obtained data.
Keywords: background field, principal chiral field, renormalization, running coupling constant.
Received: 28.12.2006
Revised: 16.03.2007
English version:
Theoretical and Mathematical Physics, 2008, Volume 154, Issue 2, Pages 303–310
DOI: https://doi.org/10.1007/s11232-008-0028-5
Bibliographic databases:
Language: Russian
Citation: A. A. Bagaev, “Two-loop calculations of the matrix σ-model effective action in the background field formalism”, TMF, 154:2 (2008), 354–362; Theoret. and Math. Phys., 154:2 (2008), 303–310
Citation in format AMSBIB
\Bibitem{Bag08}
\by A.~A.~Bagaev
\paper Two-loop calculations of the~matrix $\sigma$-model effective action in
the~background field formalism
\jour TMF
\yr 2008
\vol 154
\issue 2
\pages 354--362
\mathnet{http://mi.mathnet.ru/tmf6174}
\crossref{https://doi.org/10.4213/tmf6174}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2424013}
\zmath{https://zbmath.org/?q=an:1150.81015}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008TMP...154..303B}
\transl
\jour Theoret. and Math. Phys.
\yr 2008
\vol 154
\issue 2
\pages 303--310
\crossref{https://doi.org/10.1007/s11232-008-0028-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000253216500012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-39349084075}
Linking options:
  • https://www.mathnet.ru/eng/tmf6174
  • https://doi.org/10.4213/tmf6174
  • https://www.mathnet.ru/eng/tmf/v154/i2/p354
  • This publication is cited in the following 5 articles:
    1. A. V. Ivanov, “Uslovie primenimosti obrezaniya v dvumernykh modelyakh”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 30, Zap. nauchn. sem. POMI, 532, POMI, SPb., 2024, 153–168  mathnet
    2. P. V. Akacevich, A. V. Ivanov, “On two-loop effective action of 2d sigma model”, Eur. Phys. J. C, 83:7 (2023)  crossref
    3. Bagaev A.A. Pis'mak Yu.M., “The 0D Quantum Field Theory: Multiple Integrals Via Background Field Formalism”, Proceedings of the International Conference on Days on Diffraction 2016 (Dd), ed. Motygin O. Kiselev A. Kapitanova P. Goray L. Kazakov A. Kirpichnikova A., IEEE, 2016, 41–45  crossref  isi  scopus
    4. Bagaev A.A., “Effektivnoe deistvie v formalizme fonovogo polya”, Vestnik Sankt-Peterburgskogo universiteta. Ser. 4. Fizika. Khimiya, 2012, no. 3, 56–65  elib
    5. Bagaev A.A., “Ob ustranenii kvadratichnoi po impulsu raskhodimosti nelineinoi sigma-modeli v formalizme fonovogo polya”, Vestnik Sankt-Peterburgskogo universiteta. Ser. 4. Fizika. Khimiya, 2011, no. 4, 4–7  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:474
    Full-text PDF :248
    References:62
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025