|
This article is cited in 2 scientific papers (total in 2 papers)
Explicit computations of low-lying eigenfunctions for the quantum
trigonometric Calogero–Sutherland model related to the exceptional algebra
$E_7$
J. Fernández-Núñeza, W. Garcia Fuertesa, A. M. Perelomovb a Universidad de Oviedo
b Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)
Abstract:
In a previous paper, we studied the characters and Clebsch–Gordan series for
the exceptional Lie algebra $E_7$ by relating them to the quantum
trigonometric Calogero–Sutherland Hamiltonian with the coupling constant
$\kappa=1$. We now extend that approach to the case of an arbitrary coupling constant.
Keywords:
integrable system, Calogero–Sutherland model, exceptional Lie algebra, representation theory, orthogonal polynomials.
Received: 18.03.2007 Revised: 13.04.2007
Citation:
J. Fernández-Núñez, W. Garcia Fuertes, A. M. Perelomov, “Explicit computations of low-lying eigenfunctions for the quantum
trigonometric Calogero–Sutherland model related to the exceptional algebra
$E_7$”, TMF, 154:2 (2008), 283–293; Theoret. and Math. Phys., 154:2 (2008), 240–249
Linking options:
https://www.mathnet.ru/eng/tmf6169https://doi.org/10.4213/tmf6169 https://www.mathnet.ru/eng/tmf/v154/i2/p283
|
Statistics & downloads: |
Abstract page: | 507 | Full-text PDF : | 210 | References: | 49 | First page: | 7 |
|