Abstract:
In a previous paper, we studied the characters and Clebsch–Gordan series for
the exceptional Lie algebra E7 by relating them to the quantum
trigonometric Calogero–Sutherland Hamiltonian with the coupling constant
κ=1. We now extend that approach to the case of an arbitrary coupling constant.
Citation:
J. Fernández-Núñez, W. Garcia Fuertes, A. M. Perelomov, “Explicit computations of low-lying eigenfunctions for the quantum
trigonometric Calogero–Sutherland model related to the exceptional algebra
E7”, TMF, 154:2 (2008), 283–293; Theoret. and Math. Phys., 154:2 (2008), 240–249
\Bibitem{FerGarPer08}
\by J.~Fern\'andez-N\'u{\~n}ez, W.~Garcia Fuertes, A.~M.~Perelomov
\paper Explicit computations of low-lying eigenfunctions for the~quantum
trigonometric Calogero--Sutherland model related to the~exceptional algebra
$E_7$
\jour TMF
\yr 2008
\vol 154
\issue 2
\pages 283--293
\mathnet{http://mi.mathnet.ru/tmf6169}
\crossref{https://doi.org/10.4213/tmf6169}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2424008}
\zmath{https://zbmath.org/?q=an:05354552}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008TMP...154..240F}
\transl
\jour Theoret. and Math. Phys.
\yr 2008
\vol 154
\issue 2
\pages 240--249
\crossref{https://doi.org/10.1007/s11232-008-0023-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000253216500007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-39349087523}
Linking options:
https://www.mathnet.ru/eng/tmf6169
https://doi.org/10.4213/tmf6169
https://www.mathnet.ru/eng/tmf/v154/i2/p283
This publication is cited in the following 2 articles:
Fernandez Nunez J., Garcia Fuertes W., Perelomov A.M., “On An Approach For Computing the Generating Functions of the Characters of Simple Lie Algebras”, J. Phys. A-Math. Theor., 47:14 (2014), 145202
Núñez J.F., Fuertes W.G., Perelomov A.M., “The Hamiltonian of the quantum trigonometric Calogero-Sutherland model in the exceptional algebra E8”, J. Phys. A, 42:4 (2009), 045205, 12 pp.