Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2008, Volume 154, Number 2, Pages 268–282
DOI: https://doi.org/10.4213/tmf6168
(Mi tmf6168)
 

This article is cited in 8 scientific papers (total in 8 papers)

Variational Poisson–Nijenhuis structures for partial differential equations

V. A. Golovkoa, I. S. Krasil'shchikb, A. M. Verbovetskyb

a M. V. Lomonosov Moscow State University
b Independent University of Moscow
Full-text PDF (483 kB) Citations (8)
References:
Abstract: We explore variational Poisson–Nijenhuis structures on nonlinear partial differential equations and establish relations between the Schouten and Nijenhuis brackets on the initial equation and the Lie bracket of symmetries on its natural extensions (coverings). This approach allows constructing a framework for the theory of nonlocal structures.
Keywords: Poisson–Nijenhuis structure, symmetry, conservation law, covering, nonlocal structure.
Received: 01.05.2007
English version:
Theoretical and Mathematical Physics, 2008, Volume 154, Issue 2, Pages 227–239
DOI: https://doi.org/10.1007/s11232-008-0022-y
Bibliographic databases:
Language: Russian
Citation: V. A. Golovko, I. S. Krasil'shchik, A. M. Verbovetsky, “Variational Poisson–Nijenhuis structures for partial differential equations”, TMF, 154:2 (2008), 268–282; Theoret. and Math. Phys., 154:2 (2008), 227–239
Citation in format AMSBIB
\Bibitem{GolKraVer08}
\by V.~A.~Golovko, I.~S.~Krasil'shchik, A.~M.~Verbovetsky
\paper Variational Poisson--Nijenhuis structures for partial differential
equations
\jour TMF
\yr 2008
\vol 154
\issue 2
\pages 268--282
\mathnet{http://mi.mathnet.ru/tmf6168}
\crossref{https://doi.org/10.4213/tmf6168}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2424007}
\zmath{https://zbmath.org/?q=an:1145.37325}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008TMP...154..227G}
\transl
\jour Theoret. and Math. Phys.
\yr 2008
\vol 154
\issue 2
\pages 227--239
\crossref{https://doi.org/10.1007/s11232-008-0022-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000253216500006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-39349099336}
Linking options:
  • https://www.mathnet.ru/eng/tmf6168
  • https://doi.org/10.4213/tmf6168
  • https://www.mathnet.ru/eng/tmf/v154/i2/p268
  • This publication is cited in the following 8 articles:
    1. Kiselev A.V., Krutov A.O., “Non-Abelian Lie Algebroids Over Jet Spaces”, J. Nonlinear Math. Phys., 21:2 (2014), 188–213  crossref  mathscinet  isi  scopus
    2. Kiselev A.V., “Homological Evolutionary Vector Fields in Korteweg-de Vries, Liouville, Maxwell, and Several Other Models”, 7th International Conference on Quantum Theory and Symmetries (QTS7), Journal of Physics Conference Series, 343, IOP Publishing Ltd, 2012, 012058  crossref  isi  scopus
    3. Krasil'shchik I.S., Verbovetsky A.M., Vitolo R., “A Unified Approach to Computation of Integrable Structures”, Acta Appl. Math., 120:1 (2012), 199–218  crossref  mathscinet  zmath  isi  scopus
    4. A. V. Kiselev, J. W. van de Leur, “Variational Lie algebroids and homological evolutionary vector fields”, Theoret. and Math. Phys., 167:3 (2011), 772–784  mathnet  crossref  crossref  adsnasa  isi
    5. Krasil'shchik J., Verbovetsky A., “Geometry of jet spaces and integrable systems”, J. Geom. Phys., 61:9 (2011), 1633–1674  crossref  mathscinet  zmath  adsnasa  isi  scopus
    6. Hussin V., Kiselev A.V., Krutov A. ., Wolf T., “$N=2$ supersymmetric $a=4$-Korteweg-de Vries hierarchy derived via Gardner's deformation of Kaup-Boussinesq equation”, J. Math. Phys., 51:8 (2010), 083507, 19 pp.  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    7. Kiselev A.V., van de Leur J.W., “A family of second Lie algebra structures for symmetries of a dispersionless Boussinesq system”, J. Phys. A, 42:40 (2009), 404011, 8 pp.  crossref  mathscinet  zmath  isi  elib  scopus
    8. Golovko V., Kersten P., Krasil'shchik I., Verbovetsky A., “On integrability of the Camassa-Holm equation and its invariants”, Acta Appl. Math., 101:1-3 (2008), 59–83  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:669
    Full-text PDF :269
    References:84
    First page:12
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025