Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2007, Volume 152, Number 3, Pages 457–465
DOI: https://doi.org/10.4213/tmf6102
(Mi tmf6102)
 

This article is cited in 4 scientific papers (total in 4 papers)

Phases of the Goldstone multitrace matrix model in the large-NN limit

A. O. Shishanin

Moscow State Industrial University
Full-text PDF (367 kB) Citations (4)
References:
Abstract: We consider the Goldstone Hermitian matrix model with a multitrace term. When defining the solution on two intervals, we introduce a special parameter ξξ describing the phase. We discuss the phase existence conditions at ξ=0ξ=0 (or 11) and at ξ=1/2ξ=1/2. We calculate the propagator and the vacuum energy in the symmetric case ξ=1/2ξ=1/2. In the general case, we discuss the solution structure and calculate the magnetization and other parameters expressed in terms of the sum of all the intervals.
Keywords: planar approximation, Hermitian matrix model, multitrace term, multicut solution.
Received: 16.10.2006
Revised: 26.01.2007
English version:
Theoretical and Mathematical Physics, 2007, Volume 152, Issue 3, Pages 1258–1265
DOI: https://doi.org/10.1007/s11232-007-0110-4
Bibliographic databases:
Language: Russian
Citation: A. O. Shishanin, “Phases of the Goldstone multitrace matrix model in the large-NN limit”, TMF, 152:3 (2007), 457–465; Theoret. and Math. Phys., 152:3 (2007), 1258–1265
Citation in format AMSBIB
\Bibitem{Shi07}
\by A.~O.~Shishanin
\paper Phases of the~Goldstone multitrace matrix model in the~large-$N$ limit
\jour TMF
\yr 2007
\vol 152
\issue 3
\pages 457--465
\mathnet{http://mi.mathnet.ru/tmf6102}
\crossref{https://doi.org/10.4213/tmf6102}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2402245}
\zmath{https://zbmath.org/?q=an:1134.81401}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2007TMP...152.1258S}
\elib{https://elibrary.ru/item.asp?id=9918135}
\transl
\jour Theoret. and Math. Phys.
\yr 2007
\vol 152
\issue 3
\pages 1258--1265
\crossref{https://doi.org/10.1007/s11232-007-0110-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000249733400004}
\elib{https://elibrary.ru/item.asp?id=13557696}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34748887156}
Linking options:
  • https://www.mathnet.ru/eng/tmf6102
  • https://doi.org/10.4213/tmf6102
  • https://www.mathnet.ru/eng/tmf/v152/i3/p457
  • This publication is cited in the following 4 articles:
    1. Tekel J., “Matrix Model Approximations of Fuzzy Scalar Field Theories and Their Phase Diagram”, J. High Energy Phys., 2015, no. 12, 176  crossref  mathscinet  zmath  isi  scopus
    2. Rea S., Saemann Ch., “the Phase Diagram of Scalar Field Theory on the Fuzzy Disc”, J. High Energy Phys., 2015, no. 11, 115  crossref  mathscinet  zmath  isi  elib  scopus
    3. Tekel J., “Phase Structure of Fuzzy Field Theories and Multitrace Matrix Models”, Acta Phys. Slovaca, 65:5 (2015), 369–469  isi
    4. Christian Sämann, “The Multitrace Matrix Model of Scalar Field Theory on Fuzzy $\mathbb CP^n$”, SIGMA, 6 (2010), 050, 23 pp.  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:435
    Full-text PDF :235
    References:60
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025