Abstract:
We consider the possibility of using the Sklyanin method to construct
Darboux–Nijenhuis variables of special form in the example of generalized
open Toda chains associated with classical root systems.
Keywords:
integrable system, bi-Hamiltonian manifold, separation of variables.
Citation:
A. V. Tsiganov, “Darboux–Nijenhuis variables for open generalized Toda chains”, TMF, 152:3 (2007), 440–456; Theoret. and Math. Phys., 152:3 (2007), 1243–1257
Tsiganov A.V., “On Bi-Integrable Natural Hamiltonian Systems on Riemannian Manifolds”, J Nonlinear Math Phys, 18:2 (2011), 245–268
Tsiganov A.V., “Change of the time for the periodic Toda lattices and natural systems on the plane with higher order integrals of motion”, Regul. Chaotic Dyn., 14:4-5 (2009), 541–549
Tsiganov A.V., “The Poisson bracket compatible with the classical reflection equation algebra”, Regul. Chaotic Dyn., 13:3 (2008), 191–203
Tsiganov A.V., “A family of the Poisson brackets compatible with the Sklyanin bracket”, J. Phys. A, 40:18 (2007), 4803–4816
Yuriy A. Grigoryev, Andrey V. Tsiganov, “On the Darboux–Nijenhuis Variables for the Open Toda Lattice”, SIGMA, 2 (2006), 097, 15 pp.