Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2007, Volume 152, Number 2, Pages 278–291
DOI: https://doi.org/10.4213/tmf6087
(Mi tmf6087)
 

This article is cited in 6 scientific papers (total in 6 papers)

Quantum mechanics as the quadratic Taylor approximation of classical mechanics: The finite-dimensional case

A. Yu. Khrennikov

Växjö University
Full-text PDF (475 kB) Citations (6)
References:
Abstract: We show that in contrast to a rather common opinion, quantum mechanics can be represented as an approximation of classical statistical mechanics. We consider an approximation based on the ordinary Taylor expansion of physical variables. The quantum contribution is given by the second-order term. To escape technical difficulties related to the infinite dimensionality of the phase space for quantum mechanics, we consider finite-dimensional quantum mechanics. On one hand, this is a simple example with high pedagogical value. On the other hand, quantum information operates in a finite-dimensional state space. Therefore, our investigation can be considered a construction of a classical statistical model for quantum information.
Keywords: quantum average, classical average, von Neumann trace formula, approximation, small parameter, Taylor expansion.
English version:
Theoretical and Mathematical Physics, 2007, Volume 152, Issue 2, Pages 1111–1121
DOI: https://doi.org/10.1007/s11232-007-0095-z
Bibliographic databases:
Language: Russian
Citation: A. Yu. Khrennikov, “Quantum mechanics as the quadratic Taylor approximation of classical mechanics: The finite-dimensional case”, TMF, 152:2 (2007), 278–291; Theoret. and Math. Phys., 152:2 (2007), 1111–1121
Citation in format AMSBIB
\Bibitem{Khr07}
\by A.~Yu.~Khrennikov
\paper Quantum mechanics as the~quadratic Taylor approximation of classical mechanics: The~finite-dimensional case
\jour TMF
\yr 2007
\vol 152
\issue 2
\pages 278--291
\mathnet{http://mi.mathnet.ru/tmf6087}
\crossref{https://doi.org/10.4213/tmf6087}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2429280}
\zmath{https://zbmath.org/?q=an:1130.81013}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2007TMP...152.1111K}
\elib{https://elibrary.ru/item.asp?id=9541935}
\transl
\jour Theoret. and Math. Phys.
\yr 2007
\vol 152
\issue 2
\pages 1111--1121
\crossref{https://doi.org/10.1007/s11232-007-0095-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000249211500007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34548435221}
Linking options:
  • https://www.mathnet.ru/eng/tmf6087
  • https://doi.org/10.4213/tmf6087
  • https://www.mathnet.ru/eng/tmf/v152/i2/p278
  • This publication is cited in the following 6 articles:
    1. Andrei Khrennikov, “Bild Conception of Scientific Theory Structuring in Classical and Quantum Physics: From Hertz and Boltzmann to Schrödinger and De Broglie”, Entropy, 25:11 (2023), 1565  crossref
    2. Andrei Khrennikov, “Hertz's Viewpoint on Quantum Theory”, Act Nerv Super, 61:1-2 (2019), 24  crossref
    3. Khrennikov A., Basieva I., “Towards Experiments to Test Violation of the Original Bell Inequality”, Entropy, 20:4 (2018), 280  crossref  isi  scopus
    4. Khrennikov A.Yu., “Towards a Wave Resolution of the Wave-Particle Duality”, Int. J. Mod. Phys. A, 29:31 (2014), 1450185  crossref  mathscinet  zmath  isi  scopus
    5. Beyond Quantum, 2014, 303  crossref
    6. Khrennikov A., “Quantum correlations from classical Gaussian random variables: fundamental role of vacuum noise”, Fluct. Noise Lett., 9:4 (2010), 331–341  crossref  mathscinet  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:674
    Full-text PDF :347
    References:66
    First page:4
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025