|
This article is cited in 6 scientific papers (total in 6 papers)
Fermionic construction of the partition function for multimatrix models and the multicomponent Toda lattice hierarchy
J. Harnadab, A. Yu. Orlovc a Université de Montréal, Centre de Recherches Mathématiques
b Concordia University, Department of Mathematics and Statistics
c P. P. Shirshov institute of Oceanology of RAS
Abstract:
We use $p$-component fermions, $p=2,3,\dots$, to represent
$(2p-2)N$-fold integrals as a fermionic vacuum expectation. This yields
a fermionic representation for various $(2p-2)$-matrix models. We discuss
links with the $p$-component Kadomtsev–Petviashvili hierarchy and also with
the $p$-component Toda lattice hierarchy. We show that the set of all but two
flows of the $p$-component Toda lattice hierarchy changes standard matrix
models to new ones.
Keywords:
matrix model, tau function of multicomponent Toda chain, integrable system.
Citation:
J. Harnad, A. Yu. Orlov, “Fermionic construction of the partition function for multimatrix models and the multicomponent Toda lattice hierarchy”, TMF, 152:2 (2007), 265–277; Theoret. and Math. Phys., 152:2 (2007), 1099–1110
Linking options:
https://www.mathnet.ru/eng/tmf6086https://doi.org/10.4213/tmf6086 https://www.mathnet.ru/eng/tmf/v152/i2/p265
|
Statistics & downloads: |
Abstract page: | 377 | Full-text PDF : | 193 | References: | 46 | First page: | 2 |
|