Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2000, Volume 123, Number 2, Pages 264–284
DOI: https://doi.org/10.4213/tmf601
(Mi tmf601)
 

This article is cited in 3 scientific papers (total in 3 papers)

A new approach to the representation theory of semisimple Lie algebras and quantum algebras

A. N. Leznovab

a Institute for High Energy Physics
b Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics
Full-text PDF (266 kB) Citations (3)
References:
Abstract: We propose a method for explicitly constructing the simple-root generators in an arbitrary finite-dimensional representation of a semisimple quantum algebra or Lie algebra. The method is based on general results from the global theory of representations of semisimple groups. The rank-two algebras $A_2$, $B_2=C_2$, $D_2$, and $G_2$ are considered as examples. The simple-root generators are represented as solutions of a system of finite-difference equations and are given in the form of $N_l\times N_l$ matrices, where $N_l$ is the dimension of the representation.
English version:
Theoretical and Mathematical Physics, 2000, Volume 123, Issue 2, Pages 633–650
DOI: https://doi.org/10.1007/BF02551396
Bibliographic databases:
Language: Russian
Citation: A. N. Leznov, “A new approach to the representation theory of semisimple Lie algebras and quantum algebras”, TMF, 123:2 (2000), 264–284; Theoret. and Math. Phys., 123:2 (2000), 633–650
Citation in format AMSBIB
\Bibitem{Lez00}
\by A.~N.~Leznov
\paper A new approach to the representation theory of semisimple Lie algebras and quantum algebras
\jour TMF
\yr 2000
\vol 123
\issue 2
\pages 264--284
\mathnet{http://mi.mathnet.ru/tmf601}
\crossref{https://doi.org/10.4213/tmf601}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1794159}
\zmath{https://zbmath.org/?q=an:1035.17012}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 123
\issue 2
\pages 633--650
\crossref{https://doi.org/10.1007/BF02551396}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000165897000007}
Linking options:
  • https://www.mathnet.ru/eng/tmf601
  • https://doi.org/10.4213/tmf601
  • https://www.mathnet.ru/eng/tmf/v123/i2/p264
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:318
    Full-text PDF :190
    References:45
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024