|
This article is cited in 10 scientific papers (total in 10 papers)
Compatible Lie–Poisson brackets on the Lie algebras $e(3)$ and $so(4)$
A. V. Tsiganov St. Petersburg State University, Faculty of Physics
Abstract:
We completely classify the compatible Lie–Poisson brackets on the dual
spaces of the Lie algebras $e(3)$ and $so(4)$. The corresponding
bi-Hamiltonian systems are the spinning tops corresponding to the classical
cases of integrability of the Euler equations, the Kirchhoff equations, and
the Poincaré–Zhukovskii equations.
Keywords:
integrable system, bi-Hamiltonian manifold, Lie–Poisson tensor.
Received: 03.07.2006 Revised: 12.10.2006
Citation:
A. V. Tsiganov, “Compatible Lie–Poisson brackets on the Lie algebras $e(3)$ and $so(4)$”, TMF, 151:1 (2007), 26–43; Theoret. and Math. Phys., 151:1 (2007), 459–473
Linking options:
https://www.mathnet.ru/eng/tmf6009https://doi.org/10.4213/tmf6009 https://www.mathnet.ru/eng/tmf/v151/i1/p26
|
Statistics & downloads: |
Abstract page: | 510 | Full-text PDF : | 230 | References: | 65 | First page: | 5 |
|