Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2007, Volume 151, Number 1, Pages 44–53
DOI: https://doi.org/10.4213/tmf6010
(Mi tmf6010)
 

This article is cited in 7 scientific papers (total in 7 papers)

Projective line over the finite quotient ring $GF(2)[x]/\langle x^3-x\rangle$ and quantum entanglement: Theoretical background

M. Sanigaa, M. Planatb

a Astronomical Institute, Slovak Academy of Sciences
b CNRS — Institut FEMTO-ST, Département LPMO
Full-text PDF (413 kB) Citations (7)
References:
Abstract: We consider the projective line over the finite quotient ring $R_{\diamondsuit}\equiv{GF}(2)[x]/\langle x^3-x\rangle$. The line is endowed with 18 points, spanning the neighborhoods of three pairwise distant points. Because $R_{\diamondsuit}$ is not a local ring, the neighbor (or parallel) relation is not an equivalence relation, and the sets of neighbors for two distant points hence overlap. There are nine neighbors of any point on the line, forming three disjoint families under the reduction modulo either of the two maximal ideals of the ring. Two of the families contain four points each, and they swap their roles when switching from one ideal to the other, the points in one family merging with (the image of) the point in question and the points in the other family passing in pairs into the remaining two points of the associated ordinary projective line of order two. The single point in the remaining family passes to the reference point under both maps, and its existence stems from a nontrivial character of the Jacobson radical $\mathcal J_{\diamondsuit}$ of the ring. The quotient ring $\widetilde R_{\diamondsuit} \equiv R_{\diamondsuit}/\mathcal J_{\diamondsuit}$ is isomorphic to ${GF}(2)\otimes{GF}(2)$. The projective line over $\widetilde R_{\diamondsuit}$ features nine points, each of them surrounded by four neighbors and four distant points, and any two distant points share two neighbors. We surmise that these remarkable ring geometries are relevant for modeling entangled qubit states, which we will discuss in detail in Part II of this paper.
Keywords: projective ring line, finite quotient ring, neighbor/distant relation, quantum entanglement.
Received: 21.07.2006
English version:
Theoretical and Mathematical Physics, 2007, Volume 151, Issue 1, Pages 474–481
DOI: https://doi.org/10.1007/s11232-007-0035-y
Bibliographic databases:
Language: Russian
Citation: M. Saniga, M. Planat, “Projective line over the finite quotient ring $GF(2)[x]/\langle x^3-x\rangle$ and quantum entanglement: Theoretical background”, TMF, 151:1 (2007), 44–53; Theoret. and Math. Phys., 151:1 (2007), 474–481
Citation in format AMSBIB
\Bibitem{SanPla07}
\by M.~Saniga, M.~Planat
\paper Projective line over the~finite quotient ring $GF(2)[x]/\langle x^3-x\rangle$ and quantum entanglement: Theoretical background
\jour TMF
\yr 2007
\vol 151
\issue 1
\pages 44--53
\mathnet{http://mi.mathnet.ru/tmf6010}
\crossref{https://doi.org/10.4213/tmf6010}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2347301}
\zmath{https://zbmath.org/?q=an:1119.81016}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2007TMP...151..474S}
\elib{https://elibrary.ru/item.asp?id=9521570}
\transl
\jour Theoret. and Math. Phys.
\yr 2007
\vol 151
\issue 1
\pages 474--481
\crossref{https://doi.org/10.1007/s11232-007-0035-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000245809000003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34247259473}
Linking options:
  • https://www.mathnet.ru/eng/tmf6010
  • https://doi.org/10.4213/tmf6010
  • https://www.mathnet.ru/eng/tmf/v151/i1/p44
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:535
    Full-text PDF :203
    References:56
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024