Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2007, Volume 150, Number 3, Pages 391–408
DOI: https://doi.org/10.4213/tmf5986
(Mi tmf5986)
 

This article is cited in 12 scientific papers (total in 12 papers)

Characteristic function for the stationary state of a one-dimensional dynamical system with Lévy noise

G. P. Samorodnitsky, M. Grigoriu

Cornell University
References:
Abstract: We develop a practical method for calculating the characteristic function of diffusion processes driven by Lévy white noise. The method is based on the Itô formula for semimartingales, a differential equation developed for the characteristic function of diffusion processes driven by Poisson white noise with jumps that may not have finite moments, and on approximate representations of the Lévy white noise process. Numerical results show that the proposed method is very accurate and is consistent with previous theoretical findings.
Keywords: diffusion with jumps, Lévy white noise, characteristic function, stationary solution, Itô formula.
Received: 14.04.2006
English version:
Theoretical and Mathematical Physics, 2007, Volume 150, Issue 3, Pages 332–346
DOI: https://doi.org/10.1007/s11232-007-0025-0
Bibliographic databases:
Language: Russian
Citation: G. P. Samorodnitsky, M. Grigoriu, “Characteristic function for the stationary state of a one-dimensional dynamical system with Lévy noise”, TMF, 150:3 (2007), 391–408; Theoret. and Math. Phys., 150:3 (2007), 332–346
Citation in format AMSBIB
\Bibitem{SamGri07}
\by G.~P.~Samorodnitsky, M.~Grigoriu
\paper Characteristic function for the~stationary state of a~one-dimensional
dynamical system with L\'evy noise
\jour TMF
\yr 2007
\vol 150
\issue 3
\pages 391--408
\mathnet{http://mi.mathnet.ru/tmf5986}
\crossref{https://doi.org/10.4213/tmf5986}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2340733}
\zmath{https://zbmath.org/?q=an:1119.82035}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2007TMP...150..332S}
\elib{https://elibrary.ru/item.asp?id=9469531}
\transl
\jour Theoret. and Math. Phys.
\yr 2007
\vol 150
\issue 3
\pages 332--346
\crossref{https://doi.org/10.1007/s11232-007-0025-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000245546400003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33947396400}
Linking options:
  • https://www.mathnet.ru/eng/tmf5986
  • https://doi.org/10.4213/tmf5986
  • https://www.mathnet.ru/eng/tmf/v150/i3/p391
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:631
    Full-text PDF :344
    References:47
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024