|
This article is cited in 10 scientific papers (total in 10 papers)
Transition function for the Toda chain
A. V. Silant'evab a Joint Institute for Nuclear Research
b Département de Mathématiques, Université d'Angers
Abstract:
We use the method of $\Lambda$-operators developed by Derkachov, Korchemsky,
and Manashov to derive eigenfunctions for the open Toda chain. Using
the diagram technique developed for these $\Lambda$-operators, we reproduce
the Sklyanin measure and study the properties of the $\Lambda$-operators. This
approach to the open Toda chain eigenfunctions reproduces the Gauss–Givental
representation for these eigenfunctions.
Keywords:
Toda chain, separation of variables, $Q$-operators.
Received: 13.03.2006 Revised: 08.07.2006
Citation:
A. V. Silant'ev, “Transition function for the Toda chain”, TMF, 150:3 (2007), 371–390; Theoret. and Math. Phys., 150:3 (2007), 315–331
Linking options:
https://www.mathnet.ru/eng/tmf5985https://doi.org/10.4213/tmf5985 https://www.mathnet.ru/eng/tmf/v150/i3/p371
|
Statistics & downloads: |
Abstract page: | 556 | Full-text PDF : | 261 | References: | 77 | First page: | 4 |
|