Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2000, Volume 123, Number 2, Pages 198–204
DOI: https://doi.org/10.4213/tmf598
(Mi tmf598)
 

This article is cited in 2 scientific papers (total in 2 papers)

The pentagon equation and mapping-class groups of punctured surfaces

R. M. Kashaevab

a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b University of Helsinki
Full-text PDF (189 kB) Citations (2)
References:
Abstract: In the quantum Teichmüller theory, the mapping-class groups of punctured surfaces are represented projectively based on Penner coordinates. Algebraically, the representation is based on the pentagon equation together with pair of additional relations. Two more examples of solutions of these equations are connected with matrix (or operator) generalizations of the Rogers dilogarithm. The corresponding central charges are rational. It is possible that this system of equations admits many different solutions.
English version:
Theoretical and Mathematical Physics, 2000, Volume 123, Issue 2, Pages 576–581
DOI: https://doi.org/10.1007/BF02551393
Bibliographic databases:
Language: Russian
Citation: R. M. Kashaev, “The pentagon equation and mapping-class groups of punctured surfaces”, TMF, 123:2 (2000), 198–204; Theoret. and Math. Phys., 123:2 (2000), 576–581
Citation in format AMSBIB
\Bibitem{Kas00}
\by R.~M.~Kashaev
\paper The pentagon equation and mapping-class groups of punctured surfaces
\jour TMF
\yr 2000
\vol 123
\issue 2
\pages 198--204
\mathnet{http://mi.mathnet.ru/tmf598}
\crossref{https://doi.org/10.4213/tmf598}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1794156}
\zmath{https://zbmath.org/?q=an:1031.81059}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 123
\issue 2
\pages 576--581
\crossref{https://doi.org/10.1007/BF02551393}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000165897000004}
Linking options:
  • https://www.mathnet.ru/eng/tmf598
  • https://doi.org/10.4213/tmf598
  • https://www.mathnet.ru/eng/tmf/v123/i2/p198
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:721
    Full-text PDF :222
    References:47
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024