Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2000, Volume 123, Number 2, Pages 205–236
DOI: https://doi.org/10.4213/tmf599
(Mi tmf599)
 

This article is cited in 12 scientific papers (total in 12 papers)

Orthogonal polynomials of a discrete variable and Lie algebras of complex-size matrices

D. A. Leitesa, A. N. Sergeevb

a Stockholm University
b Balakovo Institute of Technique, Technology and Control
References:
Abstract: We give a uniform interpretation of the classical continuous Chebyshev and Hahn orthogonal polynomials of a discrete variable in terms of the Feigin Lie algebra $\mathfrak{gl}(\lambda)$ for $\lambda\in\mathbb C$. The Chebyshev and Hahn $q$-polynomials admit a similar interpretation, and orthogonal polynomials corresponding to Lie superalgebras can be introduced. We also describe quasi-finite modules over $\mathfrak{gl}(\lambda)$, real forms of this algebra, and the unitarity conditions for quasi-finite modules. Analogues of tensors over $\mathfrak{gl}(\lambda)$ are also introduced.
English version:
Theoretical and Mathematical Physics, 2000, Volume 123, Issue 2, Pages 582–608
DOI: https://doi.org/10.1007/BF02551394
Bibliographic databases:
Language: Russian
Citation: D. A. Leites, A. N. Sergeev, “Orthogonal polynomials of a discrete variable and Lie algebras of complex-size matrices”, TMF, 123:2 (2000), 205–236; Theoret. and Math. Phys., 123:2 (2000), 582–608
Citation in format AMSBIB
\Bibitem{LeiSer00}
\by D.~A.~Leites, A.~N.~Sergeev
\paper Orthogonal polynomials of a discrete variable and Lie algebras of complex-size matrices
\jour TMF
\yr 2000
\vol 123
\issue 2
\pages 205--236
\mathnet{http://mi.mathnet.ru/tmf599}
\crossref{https://doi.org/10.4213/tmf599}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1794157}
\zmath{https://zbmath.org/?q=an:1017.17021}
\elib{https://elibrary.ru/item.asp?id=13340347}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 123
\issue 2
\pages 582--608
\crossref{https://doi.org/10.1007/BF02551394}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000165897000005}
Linking options:
  • https://www.mathnet.ru/eng/tmf599
  • https://doi.org/10.4213/tmf599
  • https://www.mathnet.ru/eng/tmf/v123/i2/p205
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024