Processing math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2007, Volume 150, Number 1, Pages 41–84
DOI: https://doi.org/10.4213/tmf5965
(Mi tmf5965)
 

This article is cited in 60 scientific papers (total in 60 papers)

The Dirac Hamiltonian with a superstrong Coulomb field

B. L. Voronova, D. M. Gitmanb, I. V. Tyutina

a P. N. Lebedev Physical Institute, Russian Academy of Sciences
b Universidade de São Paulo
References:
Abstract: We consider the quantum mechanical problem of a relativistic Dirac particle moving in the Coulomb field of a point charge Ze. It is often declared in the literature that a quantum mechanical description of such a system does not exist for charge values exceeding the so-called critical charge with Z=α1=137 because the standard expression for the lower bound-state energy yields complex values at overcritical charges. We show that from the mathematical standpoint, there is no problem in defining a self-adjoint Hamiltonian for any charge value. Furthermore, the transition through the critical charge does not lead to any qualitative changes in the mathematical description of the system. A specific feature of overcritical charges is a nonuniqueness of the self-adjoint Hamiltonian, but this nonuniqueness is also characteristic for charge values less than critical (and larger than the subcritical charge with Z=(3/2)α1=118). We present the spectra and (generalized) eigenfunctions for all self-adjoint Hamiltonians. We use the methods of the theory of self-adjoint extensions of symmetric operators and the Krein method of guiding functionals. The relation of the constructed one-particle quantum mechanics to the real physics of electrons in superstrong Coulomb fields where multiparticle effects may be crucially important is an open question.
Keywords: Dirac Hamiltonian, Coulomb field, self-adjoint extensions, spectral analysis.
Received: 08.08.2006
English version:
Theoretical and Mathematical Physics, 2007, Volume 150, Issue 1, Pages 34–72
DOI: https://doi.org/10.1007/s11232-007-0004-5
Bibliographic databases:
Language: Russian
Citation: B. L. Voronov, D. M. Gitman, I. V. Tyutin, “The Dirac Hamiltonian with a superstrong Coulomb field”, TMF, 150:1 (2007), 41–84; Theoret. and Math. Phys., 150:1 (2007), 34–72
Citation in format AMSBIB
\Bibitem{VorGitTyu07}
\by B.~L.~Voronov, D.~M.~Gitman, I.~V.~Tyutin
\paper The~Dirac Hamiltonian with a~superstrong Coulomb field
\jour TMF
\yr 2007
\vol 150
\issue 1
\pages 41--84
\mathnet{http://mi.mathnet.ru/tmf5965}
\crossref{https://doi.org/10.4213/tmf5965}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2325867}
\zmath{https://zbmath.org/?q=an:1118.81027}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2007TMP...150...34V}
\elib{https://elibrary.ru/item.asp?id=9433551}
\transl
\jour Theoret. and Math. Phys.
\yr 2007
\vol 150
\issue 1
\pages 34--72
\crossref{https://doi.org/10.1007/s11232-007-0004-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000244088700003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846365569}
Linking options:
  • https://www.mathnet.ru/eng/tmf5965
  • https://doi.org/10.4213/tmf5965
  • https://www.mathnet.ru/eng/tmf/v150/i1/p41
  • This publication is cited in the following 60 articles:
    1. Matteo Gallone, Alessandro Michelangeli, Springer Monographs in Mathematics, Self-Adjoint Extension Schemes and Modern Applications to Quantum Hamiltonians, 2023, 183  crossref
    2. O.R. Smits, P. Indelicato, W. Nazarewicz, M. Piibeleht, P. Schwerdtfeger, “Pushing the limits of the periodic table — A review on atomic relativistic electronic structure theory and calculations for the superheavy elements”, Physics Reports, 1035 (2023), 1  crossref
    3. B. Belbaki, A. Bounames, “Influence of a Cosmic String on the Rate of Pairs Produced by the Coulomb Potential”, Int J Theor Phys, 62:6 (2023)  crossref
    4. Juric T., “Observables in Quantum Mechanics and the Importance of Self-Adjointness”, Universe, 8:2 (2022), 129  crossref  isi
    5. Breev A.I., Gitman D.M., “Massless Electronic Excitations in Graphene Near Coulomb Impurities”, J. Exp. Theor. Phys., 132:6 (2021), 941–959  crossref  isi
    6. Asorey M., Santagata A., “The Critical Transition of Coulomb Impurities in Gapped Graphene”, J. High Energy Phys., 2020, no. 8, 144  crossref  mathscinet  isi
    7. Katin K.P., Maslov M.M., Krylov K.S., Mur V.D., “On the Impact of Substrate Uniform Mechanical Tension on the Graphene Electronic Structure”, Materials, 13:20 (2020), 4683  crossref  isi
    8. Cassano B., Pizzichillo F., Vega L., “A Hardy-Type Inequality and Some Spectral Characterizations For the Dirac-Coulomb Operator”, Rev. Mat. Complut., 33:1 (2020), 1–18  crossref  mathscinet  isi
    9. Krylov K.S. Mur V.D. Fedotov A.M., “On the Resonances Near the Continua Boundaries of the Dirac Equation With a Short-Range Interaction”, Eur. Phys. J. C, 80:3 (2020), 270  crossref  mathscinet  isi  scopus
    10. Breev A.I. Ferreira R. Gitman D.M. Voronov B.L., “Spectra of Electronic Excitations in Graphene Near Coulomb Impurities”, J. Exp. Theor. Phys., 130:5 (2020), 711–736  crossref  isi
    11. K. A. Sveshnikov, Yu. S. Voronina, A. S. Davydov, P. A. Grashin, “Essentially nonperturbative vacuum polarization effects in a two-dimensional Dirac–Coulomb system with $Z>Z_\mathrm{cr}$: Vacuum charge density”, Theoret. and Math. Phys., 198:3 (2019), 331–362  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    12. Gallone M., Michelangeli A., “Self-Adjoint Realisations of the Dirac-Coulomb Hamiltonian For Heavy Nuclei”, Anal. Math. Phys., 9:1 (2019), 585–616  crossref  mathscinet  isi  scopus
    13. Cassano B., Pizzichillo F., “Boundary Triples For the Dirac Operator With Coulomb-Type Spherically Symmetric Perturbations”, J. Math. Phys., 60:4 (2019), 041502  crossref  mathscinet  zmath  isi  scopus
    14. Neznamov V.P. Safronov I.I., “Second-Order Stationary Solutions For Fermions in An External Coulomb Field”, J. Exp. Theor. Phys., 128:5 (2019), 672–683  crossref  isi
    15. Davydov A. Sveshnikov K. Voronina Yu., “Nonperturbative Vacuum Polarization Effects in Two-Dimensional Supercritical Dirac-Coulomb System i. Vacuum Charge Density”, Int. J. Mod. Phys. A, 33:1 (2018), 1850004  crossref  mathscinet  zmath  isi  scopus
    16. Gallone M., Michelangeli A., “Discrete Spectra For Critical Dirac-Coulomb Hamiltonians”, J. Math. Phys., 59:6 (2018), 062108  crossref  mathscinet  zmath  isi  scopus
    17. Cassano B., Pizzichillo F., “Self-Adjoint Extensions For the Dirac Operator With Coulomb-Type Spherically Symmetric Potentials”, Lett. Math. Phys., 108:12 (2018), 2635–2667  crossref  mathscinet  isi  scopus
    18. Gitman D.M., Gavrilov S.P., “QFT Treatment of Processes in Strong External Backgrounds”, Russ. Phys. J., 59:11 (2017), 1723–1730  crossref  zmath  isi  scopus
    19. Khalilov V.R., “Quasi-Stationary States and Fermion Pair Creation From a Vacuum in Supercritical Coulomb Field”, Mod. Phys. Lett. A, 32:38 (2017), 1750200  crossref  mathscinet  isi  scopus
    20. Kuleshov V.M. Mur V.D. Fedotov A.M. Lozovik Yu.E., “Coulomb Problem For Z > Z(Cr) in Doped Graphene”, J. Exp. Theor. Phys., 125:6 (2017), 1144–1162  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:1258
    Full-text PDF :527
    References:112
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025