Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2007, Volume 150, Number 1, Pages 41–84
DOI: https://doi.org/10.4213/tmf5965
(Mi tmf5965)
 

This article is cited in 60 scientific papers (total in 60 papers)

The Dirac Hamiltonian with a superstrong Coulomb field

B. L. Voronova, D. M. Gitmanb, I. V. Tyutina

a P. N. Lebedev Physical Institute, Russian Academy of Sciences
b Universidade de São Paulo
References:
Abstract: We consider the quantum mechanical problem of a relativistic Dirac particle moving in the Coulomb field of a point charge $Ze$. It is often declared in the literature that a quantum mechanical description of such a system does not exist for charge values exceeding the so-called critical charge with $Z=\alpha^{-1}=137$ because the standard expression for the lower bound-state energy yields complex values at overcritical charges. We show that from the mathematical standpoint, there is no problem in defining a self-adjoint Hamiltonian for any charge value. Furthermore, the transition through the critical charge does not lead to any qualitative changes in the mathematical description of the system. A specific feature of overcritical charges is a nonuniqueness of the self-adjoint Hamiltonian, but this nonuniqueness is also characteristic for charge values less than critical $($and larger than the subcritical charge with $Z=(\sqrt{3}/2)\alpha^{-1}=118)$. We present the spectra and $($generalized$)$ eigenfunctions for all self-adjoint Hamiltonians. We use the methods of the theory of self-adjoint extensions of symmetric operators and the Krein method of guiding functionals. The relation of the constructed one-particle quantum mechanics to the real physics of electrons in superstrong Coulomb fields where multiparticle effects may be crucially important is an open question.
Keywords: Dirac Hamiltonian, Coulomb field, self-adjoint extensions, spectral analysis.
Received: 08.08.2006
English version:
Theoretical and Mathematical Physics, 2007, Volume 150, Issue 1, Pages 34–72
DOI: https://doi.org/10.1007/s11232-007-0004-5
Bibliographic databases:
Language: Russian
Citation: B. L. Voronov, D. M. Gitman, I. V. Tyutin, “The Dirac Hamiltonian with a superstrong Coulomb field”, TMF, 150:1 (2007), 41–84; Theoret. and Math. Phys., 150:1 (2007), 34–72
Citation in format AMSBIB
\Bibitem{VorGitTyu07}
\by B.~L.~Voronov, D.~M.~Gitman, I.~V.~Tyutin
\paper The~Dirac Hamiltonian with a~superstrong Coulomb field
\jour TMF
\yr 2007
\vol 150
\issue 1
\pages 41--84
\mathnet{http://mi.mathnet.ru/tmf5965}
\crossref{https://doi.org/10.4213/tmf5965}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2325867}
\zmath{https://zbmath.org/?q=an:1118.81027}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2007TMP...150...34V}
\elib{https://elibrary.ru/item.asp?id=9433551}
\transl
\jour Theoret. and Math. Phys.
\yr 2007
\vol 150
\issue 1
\pages 34--72
\crossref{https://doi.org/10.1007/s11232-007-0004-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000244088700003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846365569}
Linking options:
  • https://www.mathnet.ru/eng/tmf5965
  • https://doi.org/10.4213/tmf5965
  • https://www.mathnet.ru/eng/tmf/v150/i1/p41
  • This publication is cited in the following 60 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:1199
    Full-text PDF :490
    References:100
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024