Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2007, Volume 150, Number 1, Pages 26–40
DOI: https://doi.org/10.4213/tmf5964
(Mi tmf5964)
 

This article is cited in 14 scientific papers (total in 14 papers)

Semiclassical spectral series of a Hartree-type operator corresponding to a rest point of the classical Hamilton–Ehrenfest system

V. V. Belova, F. N. Litvinetsb, A. Yu. Trifonovb

a Moscow State Institute of Electronics and Mathematics
b Tomsk Polytechnic University
References:
Abstract: We consider the classical equations of motion in quantum means, i.e., the Hamilton–Ehrenfest system. In the semiclassical approximation in the framework of the covariant approach based on these equations, we construct the spectral series of a nonlinear Hartree-type operator corresponding to a rest point.
Keywords: complex germ method, spectral series, Hartree equation.
Received: 26.05.2006
English version:
Theoretical and Mathematical Physics, 2007, Volume 150, Issue 1, Pages 21–33
DOI: https://doi.org/10.1007/s11232-007-0003-6
Bibliographic databases:
Language: Russian
Citation: V. V. Belov, F. N. Litvinets, A. Yu. Trifonov, “Semiclassical spectral series of a Hartree-type operator corresponding to a rest point of the classical Hamilton–Ehrenfest system”, TMF, 150:1 (2007), 26–40; Theoret. and Math. Phys., 150:1 (2007), 21–33
Citation in format AMSBIB
\Bibitem{BelLitTri07}
\by V.~V.~Belov, F.~N.~Litvinets, A.~Yu.~Trifonov
\paper Semiclassical spectral series of a~Hartree-type operator corresponding
to a~rest point of the~classical Hamilton--Ehrenfest system
\jour TMF
\yr 2007
\vol 150
\issue 1
\pages 26--40
\mathnet{http://mi.mathnet.ru/tmf5964}
\crossref{https://doi.org/10.4213/tmf5964}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2325866}
\zmath{https://zbmath.org/?q=an:1118.81033}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2007TMP...150...21B}
\elib{https://elibrary.ru/item.asp?id=9433550}
\transl
\jour Theoret. and Math. Phys.
\yr 2007
\vol 150
\issue 1
\pages 21--33
\crossref{https://doi.org/10.1007/s11232-007-0003-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000244088700002}
\elib{https://elibrary.ru/item.asp?id=13546437}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747196114}
Linking options:
  • https://www.mathnet.ru/eng/tmf5964
  • https://doi.org/10.4213/tmf5964
  • https://www.mathnet.ru/eng/tmf/v150/i1/p26
  • This publication is cited in the following 14 articles:
    1. A. V. Pereskokov, “Asymptotics of hypergeometric coherent states and eigenfunctions of the hydrogen atom in a magnetic field. Determination of self-consistent energy levels”, Theoret. and Math. Phys., 222:3 (2025), 453–470  mathnet  crossref  crossref
    2. Anton Kulagin, Alexander Shapovalov, “Quasiparticle solutions for the nonlocal NLSE with an anti-Hermitian term in semiclassical approximation”, Eur. Phys. J. Plus, 140:3 (2025)  crossref
    3. A. V. Pereskokov, “Asymptotics of the spectrum of a Hartree-type operator with a screened Coulomb self-action potential near the upper boundaries of spectral clusters”, Theoret. and Math. Phys., 209:3 (2021), 1782–1797  mathnet  crossref  crossref  adsnasa  isi  elib
    4. D. A. Vakhrameeva, A. V. Pereskokov, “Asymptotics of the spectrum of a two-dimensional Hartree-type operator with a Coulomb self-action potential near the lower boundaries of spectral clusters”, Theoret. and Math. Phys., 199:3 (2019), 864–877  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    5. A. V. Pereskokov, “Semiclassical Asymptotics of the Spectrum near the Lower Boundary of Spectral Clusters for a Hartree-Type Operator”, Math. Notes, 101:6 (2017), 1009–1022  mathnet  crossref  crossref  mathscinet  isi  elib
    6. A. V. Pereskokov, “Semiclassical asymptotic approximation of the two-dimensional Hartree operator spectrum near the upper boundaries of spectral clusters”, Theoret. and Math. Phys., 187:1 (2016), 511–524  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    7. A. V. Pereskokov, “Asymptotics of the Hartree operator spectrum near the upper boundaries of spectral clusters: Asymptotic solutions localized near a circle”, Theoret. and Math. Phys., 183:1 (2015), 516–526  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    8. A. V. Pereskokov, “Semiclassical asymptotic spectrum of a Hartree-type operator near the upper boundary of spectral clusters”, Theoret. and Math. Phys., 178:1 (2014), 76–92  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    9. Aleksandr L. Lisok, Aleksandr V. Shapovalov, Andrey Yu. Trifonov, “Symmetry and Intertwining Operators for the Nonlocal Gross–Pitaevskii Equation”, SIGMA, 9 (2013), 066, 21 pp.  mathnet  crossref  mathscinet
    10. Lipskaya A.V., Pereskokov A.V., “Asimptoticheskie resheniya odnomernogo uravneniya Khartri s negladkim potentsialom vzaimodeistviya. Asimptotika kvantovykh srednikh”, Vestn. Mosk. energeticheskogo in-ta, 2012, no. 6, 105–116  elib
    11. Belov V.V., Smirnova E.I., Trifonov A.Yu., “Semiclassical spectral series for the two-component Hartree-type equation”, Russian Phys. J., 54:6 (2011), 639–648  crossref  mathscinet  zmath  adsnasa  isi  elib  elib  scopus
    12. Litvinets F.N., “Berry phases for 3D Hartree-type equations with a quadratic potential and a uniform magnetic field”, J. Phys. A, 40:36 (2007), 11129  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    13. I. V. Khirnos, F. N. Litvinets, A. Yu. Trifonov, M. A. Shipulya, “Semiclassical spectral series of the two-component Hartree-type operator”, Russ Phys J, 50:5 (2007), 497  crossref
    14. Belov V.V., “Semiclassical spectrum for a Hartree-type equation corresponding to a rest point of the Hamilton-Ehrenfest system”, J. Phys. A, 39:34 (2006), 10821  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:817
    Full-text PDF :276
    References:120
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025