Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2007, Volume 150, Number 1, Pages 26–40
DOI: https://doi.org/10.4213/tmf5964
(Mi tmf5964)
 

This article is cited in 12 scientific papers (total in 12 papers)

Semiclassical spectral series of a Hartree-type operator corresponding to a rest point of the classical Hamilton–Ehrenfest system

V. V. Belova, F. N. Litvinetsb, A. Yu. Trifonovb

a Moscow State Institute of Electronics and Mathematics
b Tomsk Polytechnic University
References:
Abstract: We consider the classical equations of motion in quantum means, i.e., the Hamilton–Ehrenfest system. In the semiclassical approximation in the framework of the covariant approach based on these equations, we construct the spectral series of a nonlinear Hartree-type operator corresponding to a rest point.
Keywords: complex germ method, spectral series, Hartree equation.
Received: 26.05.2006
English version:
Theoretical and Mathematical Physics, 2007, Volume 150, Issue 1, Pages 21–33
DOI: https://doi.org/10.1007/s11232-007-0003-6
Bibliographic databases:
Language: Russian
Citation: V. V. Belov, F. N. Litvinets, A. Yu. Trifonov, “Semiclassical spectral series of a Hartree-type operator corresponding to a rest point of the classical Hamilton–Ehrenfest system”, TMF, 150:1 (2007), 26–40; Theoret. and Math. Phys., 150:1 (2007), 21–33
Citation in format AMSBIB
\Bibitem{BelLitTri07}
\by V.~V.~Belov, F.~N.~Litvinets, A.~Yu.~Trifonov
\paper Semiclassical spectral series of a~Hartree-type operator corresponding
to a~rest point of the~classical Hamilton--Ehrenfest system
\jour TMF
\yr 2007
\vol 150
\issue 1
\pages 26--40
\mathnet{http://mi.mathnet.ru/tmf5964}
\crossref{https://doi.org/10.4213/tmf5964}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2325866}
\zmath{https://zbmath.org/?q=an:1118.81033}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2007TMP...150...21B}
\elib{https://elibrary.ru/item.asp?id=9433550}
\transl
\jour Theoret. and Math. Phys.
\yr 2007
\vol 150
\issue 1
\pages 21--33
\crossref{https://doi.org/10.1007/s11232-007-0003-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000244088700002}
\elib{https://elibrary.ru/item.asp?id=13546437}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747196114}
Linking options:
  • https://www.mathnet.ru/eng/tmf5964
  • https://doi.org/10.4213/tmf5964
  • https://www.mathnet.ru/eng/tmf/v150/i1/p26
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:748
    Full-text PDF :259
    References:105
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024