Processing math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1990, Volume 85, Number 3, Pages 397–411 (Mi tmf5958)  

This article is cited in 11 scientific papers (total in 11 papers)

Scattering of slowly moving vortices in the Abelian (2+1)-dimensional Higgs model

A. G. Sergeev, S. V. Chechin
References:
Abstract: The problem of the scattering of vortices in the Abelian (2+1)-dimensional Higgs model is studied. Equations for the geodesics describing the motion of a system of two vortices are found in Manton's approach. It is shown that in the case of a head-on collision the vortices are scattered through π/2.
Received: 19.04.1990
English version:
Theoretical and Mathematical Physics, 1990, Volume 85, Issue 3, Pages 1289–1299
DOI: https://doi.org/10.1007/BF01018406
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. G. Sergeev, S. V. Chechin, “Scattering of slowly moving vortices in the Abelian (2+1)-dimensional Higgs model”, TMF, 85:3 (1990), 397–411; Theoret. and Math. Phys., 85:3 (1990), 1289–1299
Citation in format AMSBIB
\Bibitem{SerChe90}
\by A.~G.~Sergeev, S.~V.~Chechin
\paper Scattering of~slowly moving vortices in~the Abelian $(2+1)$-dimensional Higgs model
\jour TMF
\yr 1990
\vol 85
\issue 3
\pages 397--411
\mathnet{http://mi.mathnet.ru/tmf5958}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1099135}
\transl
\jour Theoret. and Math. Phys.
\yr 1990
\vol 85
\issue 3
\pages 1289--1299
\crossref{https://doi.org/10.1007/BF01018406}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1990FV76600006}
Linking options:
  • https://www.mathnet.ru/eng/tmf5958
  • https://www.mathnet.ru/eng/tmf/v85/i3/p397
  • This publication is cited in the following 11 articles:
    1. Armen Sergeev, “SCATTERING OF GINZBURG–LANDAU VORTICES”, J Math Sci, 266:3 (2022), 476  crossref
    2. Sergeev A., “Adiabatic Limit in Ginzburg-Landau and Seiberg-Witten Equations”, Geometric Methods in Physics, Trends in Mathematics, ed. Kielanowski P. Ali S. Bieliavsky P. Odzijewicz A. Schlichenmaier M. Voronov T., Springer Int Publishing Ag, 2016, 321–330  isi
    3. Tatiana A. Ivanova, “Scattering of instantons, monopoles and vortices in higher dimensions”, Int. J. Geom. Methods Mod. Phys., 13:03 (2016), 1650032  crossref
    4. A. G. Sergeev, “Adiabatic limit in the Ginzburg–Landau and Seiberg–Witten equations”, Proc. Steklov Inst. Math., 289 (2015), 227–285  mathnet  crossref  crossref  isi  elib
    5. R. V. Palvelev, “Rasseyanie vikhrei v abelevykh modelyakh Khiggsa na kompaktnykh rimanovykh poverkhnostyakh”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 19:2 (2015), 293–310  mathnet  crossref  zmath  elib
    6. A. G. Sergeev, “On two geometric problems arising in mathematical physics”, J. Math. Sci., 223:6 (2017), 756–762  mathnet  crossref  mathscinet  elib
    7. R. V. Palvelev, “Justification of the adiabatic principle in the Abelian Higgs model”, Trans. Moscow Math. Soc., 72 (2011), 219–244  mathnet  crossref  zmath  elib
    8. R. V. Pal'velev, “Scattering of vortices in the Abelian Higgs model”, Theoret. and Math. Phys., 156:1 (2008), 1028–1040  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    9. A. G. Sergeev, “Adiabatic Limit for Some Nonlinear Equations of Gauge Field Theory”, Journal of Mathematical Sciences, 124:6 (2004), 5407–5416  mathnet  crossref  mathscinet  zmath
    10. G. M. Zinovjev, S. V. Molodtsov, A. M. Snigirev, “Quark interaction with an instanton liquid”, Phys. Atom. Nuclei, 65:5 (2002), 929  crossref
    11. A. G. Sergeev, “Seiberg–Witten Equations and Complex Abrikosov Strings”, Proc. Steklov Inst. Math., 235 (2001), 215–250  mathnet  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:544
    Full-text PDF :160
    References:78
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025