Abstract:
The problem of the scattering of vortices in the Abelian (2+1)-dimensional Higgs model is studied. Equations for the geodesics describing the motion of a system of two vortices are found in Manton's approach. It is shown that in the case of a head-on collision the vortices are scattered through π/2.
Citation:
A. G. Sergeev, S. V. Chechin, “Scattering of slowly moving vortices in the Abelian (2+1)-dimensional Higgs model”, TMF, 85:3 (1990), 397–411; Theoret. and Math. Phys., 85:3 (1990), 1289–1299
This publication is cited in the following 11 articles:
Armen Sergeev, “SCATTERING OF GINZBURG–LANDAU VORTICES”, J Math Sci, 266:3 (2022), 476
Sergeev A., “Adiabatic Limit in Ginzburg-Landau and Seiberg-Witten Equations”, Geometric Methods in Physics, Trends in Mathematics, ed. Kielanowski P. Ali S. Bieliavsky P. Odzijewicz A. Schlichenmaier M. Voronov T., Springer Int Publishing Ag, 2016, 321–330
Tatiana A. Ivanova, “Scattering of instantons, monopoles and vortices in higher dimensions”, Int. J. Geom. Methods Mod. Phys., 13:03 (2016), 1650032
A. G. Sergeev, “Adiabatic limit in the Ginzburg–Landau and Seiberg–Witten equations”, Proc. Steklov Inst. Math., 289 (2015), 227–285
R. V. Palvelev, “Rasseyanie vikhrei v abelevykh modelyakh Khiggsa na kompaktnykh rimanovykh poverkhnostyakh”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 19:2 (2015), 293–310
A. G. Sergeev, “On two geometric problems arising in mathematical physics”, J. Math. Sci., 223:6 (2017), 756–762
R. V. Palvelev, “Justification of the adiabatic principle in the Abelian Higgs model”, Trans. Moscow Math. Soc., 72 (2011), 219–244
R. V. Pal'velev, “Scattering of vortices in the Abelian Higgs model”, Theoret. and Math. Phys., 156:1 (2008), 1028–1040
A. G. Sergeev, “Adiabatic Limit for Some Nonlinear Equations of Gauge Field Theory”, Journal of Mathematical Sciences, 124:6 (2004), 5407–5416
G. M. Zinovjev, S. V. Molodtsov, A. M. Snigirev, “Quark interaction with an instanton liquid”, Phys. Atom. Nuclei, 65:5 (2002), 929
A. G. Sergeev, “Seiberg–Witten Equations and Complex Abrikosov Strings”, Proc. Steklov Inst. Math., 235 (2001), 215–250