Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1990, Volume 85, Number 3, Pages 388–396 (Mi tmf5957)  

This article is cited in 2 scientific papers (total in 2 papers)

Vacuum corrections in Kaluza–Klein model with nonstationary geometry

V. M. Dragilev
References:
Abstract: The vacuum polarization of a nonminimally coupled scalar field in a multidimensional curved spacetime is studied. It is assumed that the additional spatial dimensions form a nonstationary sphere. The method proposed for calculating the vacuum effective action makes it possible to obtain in a unified manner both the “topological” corrections as well as the terms of local-geometric origin which arise for even dimensions (divergences, logarithmic terms, conformal anomalies). In an example with two additional dimensions, the leading polarization contributions containing the lowest derivatives of the metric are calculated. For this model, acceptable static solutions with four-dimensional Minkowski space are found, and it is shown that (as in the odd-dimensional case) the nature of the stationary point of the effective Hamiltonian is not by itself a criterion of stability of spontaneous compactification since the dynamics of small perturbations is determined by kinetic vacuum corrections.
Received: 28.05.1990
English version:
Theoretical and Mathematical Physics, 1990, Volume 85, Issue 3, Pages 1283–1289
DOI: https://doi.org/10.1007/BF01018405
Bibliographic databases:
Language: Russian
Citation: V. M. Dragilev, “Vacuum corrections in Kaluza–Klein model with nonstationary geometry”, TMF, 85:3 (1990), 388–396; Theoret. and Math. Phys., 85:3 (1990), 1283–1289
Citation in format AMSBIB
\Bibitem{Dra90}
\by V.~M.~Dragilev
\paper Vacuum corrections in~Kaluza--Klein model with nonstationary geometry
\jour TMF
\yr 1990
\vol 85
\issue 3
\pages 388--396
\mathnet{http://mi.mathnet.ru/tmf5957}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1099134}
\transl
\jour Theoret. and Math. Phys.
\yr 1990
\vol 85
\issue 3
\pages 1283--1289
\crossref{https://doi.org/10.1007/BF01018405}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1990FV76600005}
Linking options:
  • https://www.mathnet.ru/eng/tmf5957
  • https://www.mathnet.ru/eng/tmf/v85/i3/p388
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025