Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1992, Volume 90, Number 3, Pages 412–423 (Mi tmf5553)  

This article is cited in 5 scientific papers (total in 5 papers)

Quantum mechanics in Riemannian spacetime. II. Operators of observables

É. A. Tagirov

Joint Institute for Nuclear Research
References:
Abstract: The formulation of the generally eovariant analog of standard (nonrelativistic) quantum mechanics in a general Riemannian spacetime begun in earlier studies of the author is continued with the introduction of asymptotic (with respect to c2c2) operators of the spatial position of a spirdess particle and of the projection of its momentum onto an arbitrary spacetime direction. The connection between the position operator and the generalization of the V1,3V1,3 Newton–Wigner operator is established. It is shown that the projection of the momentum onto the 44-velocity of the frame of reference (the energy operator) is unitarily equivalent to the Hamiltonian in the Schrödinger equation.
Received: 15.11.1990
English version:
Theoretical and Mathematical Physics, 1992, Volume 90, Issue 3, Pages 281–288
DOI: https://doi.org/10.1007/BF01036534
Bibliographic databases:
Language: Russian
Citation: É. A. Tagirov, “Quantum mechanics in Riemannian spacetime. II. Operators of observables”, TMF, 90:3 (1992), 412–423; Theoret. and Math. Phys., 90:3 (1992), 281–288
Citation in format AMSBIB
\Bibitem{Tag92}
\by \'E.~A.~Tagirov
\paper Quantum mechanics in Riemannian spacetime.~II. Operators of observables
\jour TMF
\yr 1992
\vol 90
\issue 3
\pages 412--423
\mathnet{http://mi.mathnet.ru/tmf5553}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1182307}
\zmath{https://zbmath.org/?q=an:0888.35125}
\transl
\jour Theoret. and Math. Phys.
\yr 1992
\vol 90
\issue 3
\pages 281--288
\crossref{https://doi.org/10.1007/BF01036534}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1992KF10700007}
Linking options:
  • https://www.mathnet.ru/eng/tmf5553
  • https://www.mathnet.ru/eng/tmf/v90/i3/p412
  • This publication is cited in the following 5 articles:
    1. Fabian Wagner, Gislaine Varão, Iarley P. Lobo, Valdir B. Bezerra, “Quantum-spacetime effects on nonrelativistic Schrödinger evolution”, Phys. Rev. D, 108:6 (2023)  crossref
    2. Schwartz Ph.K. Giulini D., “Post-Newtonian Corrections to Schrodinger Equations in Gravitational Fields”, Class. Quantum Gravity, 36:9 (2019), 095016  crossref  isi
    3. É. A. Tagirov, “Quantum Mechanics in Riemannian Space: Different Approaches to Quantization of the Geodesic Motion Compared”, Theoret. and Math. Phys., 136:2 (2003), 1077–1095  mathnet  crossref  crossref  mathscinet  zmath  isi
    4. Tagirov, EA, “Quantum mechanics in curved configuration space”, International Journal of Theoretical Physics, 42:3 (2003), 465  crossref  mathscinet  zmath  isi
    5. É. A. Tagirov, “General-covariant quantum mechanics in Riemannian space-time III. Dirac's particle”, Theoret. and Math. Phys., 106:1 (1996), 99–107  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:385
    Full-text PDF :136
    References:65
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025